Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32fvaw Structured version   Visualization version   GIF version

Theorem cdleme32fvaw 40150
Description: Show that (𝐹𝑅) is an atom not under 𝑊 when 𝑅 is an atom not under 𝑊. (Contributed by NM, 18-Apr-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32fvaw ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑦   𝑦,𝐻   𝑦,𝐾   𝑥,𝑅,𝑧   𝑧,𝐻   𝑧,𝐾
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme32fvaw
StepHypRef Expression
1 simplr 767 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
2 cdleme32.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 cdleme32.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 38999 . . . . . . 7 (𝑅𝐴𝑅𝐵)
54ad2antrl 726 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅𝐵)
6 cdleme32.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
76cdleme31id 40105 . . . . . 6 ((𝑅𝐵𝑃 = 𝑄) → (𝐹𝑅) = 𝑅)
85, 7sylan 578 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → (𝐹𝑅) = 𝑅)
98eleq1d 2811 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → ((𝐹𝑅) ∈ 𝐴𝑅𝐴))
108breq1d 5155 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → ((𝐹𝑅) 𝑊𝑅 𝑊))
1110notbid 317 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → (¬ (𝐹𝑅) 𝑊 ↔ ¬ 𝑅 𝑊))
129, 11anbi12d 630 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → (((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊) ↔ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)))
131, 12mpbird 256 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃 = 𝑄) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
14 simp1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
15 simp3 1135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑃𝑄)
16 simp2 1134 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
17 cdleme32.l . . . . . 6 = (le‘𝐾)
18 cdleme32.j . . . . . 6 = (join‘𝐾)
19 cdleme32.m . . . . . 6 = (meet‘𝐾)
20 cdleme32.h . . . . . 6 𝐻 = (LHyp‘𝐾)
21 cdleme32.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
22 cdleme32.c . . . . . 6 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
23 cdleme32.d . . . . . 6 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
24 cdleme32.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
25 cdleme32.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
26 cdleme32.n . . . . . 6 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
272, 17, 18, 19, 3, 20, 21, 22, 23, 24, 25, 26cdleme32snaw 40146 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊))
2814, 15, 16, 27syl12anc 835 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊))
29 cdleme32.o . . . . . . 7 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
302, 17, 18, 19, 3, 20, 21, 22, 23, 24, 25, 26, 29, 6cdleme32fva1 40149 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝐹𝑅) = 𝑅 / 𝑠𝑁)
3130eleq1d 2811 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐹𝑅) ∈ 𝐴𝑅 / 𝑠𝑁𝐴))
3230breq1d 5155 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐹𝑅) 𝑊𝑅 / 𝑠𝑁 𝑊))
3332notbid 317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (¬ (𝐹𝑅) 𝑊 ↔ ¬ 𝑅 / 𝑠𝑁 𝑊))
3431, 33anbi12d 630 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊) ↔ (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊)))
3528, 34mpbird 256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
36353expa 1115 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑃𝑄) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
3713, 36pm2.61dane 3019 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  csb 3893  ifcif 4525   class class class wbr 5145  cmpt 5228  cfv 6545  crio 7370  (class class class)co 7415  Basecbs 17207  lecple 17267  joincjn 18330  meetcmee 18331  Atomscatm 38973  HLchlt 39060  LHypclh 39695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-riotaBAD 38663
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7994  df-2nd 7995  df-undef 8279  df-proset 18314  df-poset 18332  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 38886  df-ol 38888  df-oml 38889  df-covers 38976  df-ats 38977  df-atl 39008  df-cvlat 39032  df-hlat 39061  df-llines 39209  df-lplanes 39210  df-lvols 39211  df-lines 39212  df-psubsp 39214  df-pmap 39215  df-padd 39507  df-lhyp 39699
This theorem is referenced by:  cdleme42k  40195  cdleme42ke  40196  cdleme46fvaw  40212
  Copyright terms: Public domain W3C validator