Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50trn3 Structured version   Visualization version   GIF version

Theorem cdleme50trn3 37754
Description: Part of proof that 𝐹 is a translation. 𝑃 = 𝑄 case. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdleme50trn3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme50trn3
StepHypRef Expression
1 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 cdlemef50.l . . . . . 6 = (le‘𝐾)
4 cdlemef50.m . . . . . 6 = (meet‘𝐾)
5 eqid 2824 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
6 cdlemef50.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 cdlemef50.h . . . . . 6 𝐻 = (LHyp‘𝐾)
83, 4, 5, 6, 7lhpmat 37231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
91, 2, 8syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑊) = (0.‘𝐾))
10 simprrl 780 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
11 cdlemef50.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1211, 6atbase 36490 . . . . . . . . 9 (𝑅𝐴𝑅𝐵)
1310, 12syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐵)
14 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 = 𝑄)
15 cdlemef50.f . . . . . . . . 9 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
1615cdleme31id 37595 . . . . . . . 8 ((𝑅𝐵𝑃 = 𝑄) → (𝐹𝑅) = 𝑅)
1713, 14, 16syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹𝑅) = 𝑅)
1817oveq2d 7156 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝐹𝑅)) = (𝑅 𝑅))
19 simpl1l 1221 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
20 cdlemef50.j . . . . . . . 8 = (join‘𝐾)
2120, 6hlatjidm 36570 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
2219, 10, 21syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑅) = 𝑅)
2318, 22eqtrd 2859 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 (𝐹𝑅)) = 𝑅)
2423oveq1d 7155 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = (𝑅 𝑊))
25 simpl2 1189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
263, 4, 5, 6, 7lhpmat 37231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
271, 25, 26syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑊) = (0.‘𝐾))
289, 24, 273eqtr4d 2869 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = (𝑃 𝑊))
29 simpl2l 1223 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
3020, 6hlatjidm 36570 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
3119, 29, 30syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑃) = 𝑃)
3214oveq2d 7156 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑃) = (𝑃 𝑄))
3331, 32eqtr3d 2861 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 = (𝑃 𝑄))
3433oveq1d 7155 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑊) = ((𝑃 𝑄) 𝑊))
3528, 34eqtrd 2859 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = ((𝑃 𝑄) 𝑊))
36 cdlemef50.u . 2 𝑈 = ((𝑃 𝑄) 𝑊)
3735, 36syl6eqr 2877 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃 = 𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013  wral 3132  csb 3865  ifcif 4448   class class class wbr 5049  cmpt 5129  cfv 6338  crio 7097  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  meetcmee 17546  0.cp0 17638  Atomscatm 36464  HLchlt 36551  LHypclh 37185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-lat 17647  df-covers 36467  df-ats 36468  df-atl 36499  df-cvlat 36523  df-hlat 36552  df-lhyp 37189
This theorem is referenced by:  cdleme50trn123  37755
  Copyright terms: Public domain W3C validator