MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceilval Structured version   Visualization version   GIF version

Theorem ceilval 13889
Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
Assertion
Ref Expression
ceilval (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴))

Proof of Theorem ceilval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11528 . . . 4 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21fveq2d 6924 . . 3 (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴))
32negeqd 11530 . 2 (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴))
4 df-ceil 13844 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
5 negex 11534 . 2 -(⌊‘-𝐴) ∈ V
63, 4, 5fvmpt 7029 1 (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  cr 11183  -cneg 11521  cfl 13841  cceil 13842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-neg 11523  df-ceil 13844
This theorem is referenced by:  ceilcl  13893  ceilge  13896  ceilm1lt  13899  ceille  13901  ceilid  13902  ex-ceil  30480
  Copyright terms: Public domain W3C validator