| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceilval | Structured version Visualization version GIF version | ||
| Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ceilval | ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11419 | . . . 4 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
| 2 | 1 | fveq2d 6864 | . . 3 ⊢ (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴)) |
| 3 | 2 | negeqd 11421 | . 2 ⊢ (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴)) |
| 4 | df-ceil 13761 | . 2 ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | |
| 5 | negex 11425 | . 2 ⊢ -(⌊‘-𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6970 | 1 ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 ℝcr 11073 -cneg 11412 ⌊cfl 13758 ⌈cceil 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-neg 11414 df-ceil 13761 |
| This theorem is referenced by: ceilcl 13810 ceilge 13813 ceilm1lt 13816 ceille 13818 ceilid 13819 ex-ceil 30383 ceilbi 47324 ceildivmod 47330 |
| Copyright terms: Public domain | W3C validator |