MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceilval Structured version   Visualization version   GIF version

Theorem ceilval 13739
Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
Assertion
Ref Expression
ceilval (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴))

Proof of Theorem ceilval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11349 . . . 4 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21fveq2d 6826 . . 3 (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴))
32negeqd 11351 . 2 (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴))
4 df-ceil 13694 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
5 negex 11355 . 2 -(⌊‘-𝐴) ∈ V
63, 4, 5fvmpt 6929 1 (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  cr 11002  -cneg 11342  cfl 13691  cceil 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-neg 11344  df-ceil 13694
This theorem is referenced by:  ceilcl  13743  ceilge  13746  ceilm1lt  13749  ceille  13751  ceilid  13752  ex-ceil  30423  ceilbi  47363  ceildivmod  47369
  Copyright terms: Public domain W3C validator