| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceilval | Structured version Visualization version GIF version | ||
| Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ceilval | ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11413 | . . . 4 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
| 2 | 1 | fveq2d 6862 | . . 3 ⊢ (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴)) |
| 3 | 2 | negeqd 11415 | . 2 ⊢ (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴)) |
| 4 | df-ceil 13755 | . 2 ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | |
| 5 | negex 11419 | . 2 ⊢ -(⌊‘-𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6968 | 1 ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℝcr 11067 -cneg 11406 ⌊cfl 13752 ⌈cceil 13753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-neg 11408 df-ceil 13755 |
| This theorem is referenced by: ceilcl 13804 ceilge 13807 ceilm1lt 13810 ceille 13812 ceilid 13813 ex-ceil 30377 ceilbi 47334 ceildivmod 47340 |
| Copyright terms: Public domain | W3C validator |