| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceilval | Structured version Visualization version GIF version | ||
| Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ceilval | ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11349 | . . . 4 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
| 2 | 1 | fveq2d 6826 | . . 3 ⊢ (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴)) |
| 3 | 2 | negeqd 11351 | . 2 ⊢ (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴)) |
| 4 | df-ceil 13694 | . 2 ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | |
| 5 | negex 11355 | . 2 ⊢ -(⌊‘-𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℝcr 11002 -cneg 11342 ⌊cfl 13691 ⌈cceil 13692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-neg 11344 df-ceil 13694 |
| This theorem is referenced by: ceilcl 13743 ceilge 13746 ceilm1lt 13749 ceille 13751 ceilid 13752 ex-ceil 30423 ceilbi 47363 ceildivmod 47369 |
| Copyright terms: Public domain | W3C validator |