| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldiv4lem1div2 | Structured version Visualization version GIF version | ||
| Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 12829 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 2 | 1lt4 12307 | . . . . . 6 ⊢ 1 < 4 | |
| 3 | 1nn0 12408 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn 12219 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | divfl0 13735 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
| 7 | 2, 6 | mpbi 230 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
| 8 | 1re 11123 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 9 | 4re 12220 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 10 | 4ne0 12244 | . . . . . . 7 ⊢ 4 ≠ 0 | |
| 11 | redivcl 11851 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ) | |
| 12 | 11 | flcld 13709 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ) |
| 13 | 12 | zred 12587 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ) |
| 14 | 8, 9, 10, 13 | mp3an 1463 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
| 15 | 14 | eqlei 11234 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
| 16 | 7, 15 | mp1i 13 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
| 17 | fvoveq1 7378 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
| 18 | oveq1 7362 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 19 | 1m1e0 12208 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 20 | 18, 19 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 21 | 20 | oveq1d 7370 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
| 22 | 2cnne0 12341 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 23 | div0 11820 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (0 / 2) = 0 |
| 25 | 21, 24 | eqtrdi 2784 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
| 26 | 16, 17, 25 | 3brtr4d 5127 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 27 | fldiv4lem1div2uz2 13747 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
| 28 | 26, 27 | jaoi 857 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 29 | 1, 28 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 < clt 11157 ≤ cle 11158 − cmin 11355 / cdiv 11785 ℕcn 12136 2c2 12191 4c4 12193 ℕ0cn0 12392 ℤ≥cuz 12742 ⌊cfl 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fl 13703 |
| This theorem is referenced by: gausslemma2dlem0g 27320 |
| Copyright terms: Public domain | W3C validator |