MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2 13826
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2 (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2
StepHypRef Expression
1 elnn1uz2 12931 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 1lt4 12410 . . . . . 6 1 < 4
3 1nn0 12510 . . . . . . 7 1 ∈ ℕ0
4 4nn 12317 . . . . . . 7 4 ∈ ℕ
5 divfl0 13813 . . . . . . 7 ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0))
63, 4, 5mp2an 691 . . . . . 6 (1 < 4 ↔ (⌊‘(1 / 4)) = 0)
72, 6mpbi 229 . . . . 5 (⌊‘(1 / 4)) = 0
8 1re 11236 . . . . . . 7 1 ∈ ℝ
9 4re 12318 . . . . . . 7 4 ∈ ℝ
10 4ne0 12342 . . . . . . 7 4 ≠ 0
11 redivcl 11955 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
1211flcld 13787 . . . . . . . 8 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ)
1312zred 12688 . . . . . . 7 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ)
148, 9, 10, 13mp3an 1458 . . . . . 6 (⌊‘(1 / 4)) ∈ ℝ
1514eqlei 11346 . . . . 5 ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0)
167, 15mp1i 13 . . . 4 (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0)
17 fvoveq1 7437 . . . 4 (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4)))
18 oveq1 7421 . . . . . . 7 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
19 1m1e0 12306 . . . . . . 7 (1 − 1) = 0
2018, 19eqtrdi 2783 . . . . . 6 (𝑁 = 1 → (𝑁 − 1) = 0)
2120oveq1d 7429 . . . . 5 (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2))
22 2cnne0 12444 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
23 div0 11924 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0)
2422, 23ax-mp 5 . . . . 5 (0 / 2) = 0
2521, 24eqtrdi 2783 . . . 4 (𝑁 = 1 → ((𝑁 − 1) / 2) = 0)
2616, 17, 253brtr4d 5174 . . 3 (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
27 fldiv4lem1div2uz2 13825 . . 3 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
2826, 27jaoi 856 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
291, 28sylbi 216 1 (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  0cc0 11130  1c1 11131   < clt 11270  cle 11271  cmin 11466   / cdiv 11893  cn 12234  2c2 12289  4c4 12291  0cn0 12494  cuz 12844  cfl 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fl 13781
This theorem is referenced by:  gausslemma2dlem0g  27282
  Copyright terms: Public domain W3C validator