| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldiv4lem1div2 | Structured version Visualization version GIF version | ||
| Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 12946 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 2 | 1lt4 12421 | . . . . . 6 ⊢ 1 < 4 | |
| 3 | 1nn0 12522 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn 12328 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | divfl0 13846 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
| 7 | 2, 6 | mpbi 230 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
| 8 | 1re 11240 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 9 | 4re 12329 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 10 | 4ne0 12353 | . . . . . . 7 ⊢ 4 ≠ 0 | |
| 11 | redivcl 11965 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ) | |
| 12 | 11 | flcld 13820 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ) |
| 13 | 12 | zred 12702 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ) |
| 14 | 8, 9, 10, 13 | mp3an 1463 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
| 15 | 14 | eqlei 11350 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
| 16 | 7, 15 | mp1i 13 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
| 17 | fvoveq1 7433 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
| 18 | oveq1 7417 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 19 | 1m1e0 12317 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 20 | 18, 19 | eqtrdi 2787 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 21 | 20 | oveq1d 7425 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
| 22 | 2cnne0 12455 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 23 | div0 11934 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (0 / 2) = 0 |
| 25 | 21, 24 | eqtrdi 2787 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
| 26 | 16, 17, 25 | 3brtr4d 5156 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 27 | fldiv4lem1div2uz2 13858 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
| 28 | 26, 27 | jaoi 857 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 29 | 1, 28 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕcn 12245 2c2 12300 4c4 12302 ℕ0cn0 12506 ℤ≥cuz 12857 ⌊cfl 13812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fl 13814 |
| This theorem is referenced by: gausslemma2dlem0g 27330 |
| Copyright terms: Public domain | W3C validator |