![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldiv4lem1div2 | Structured version Visualization version GIF version |
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn1uz2 12906 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
2 | 1lt4 12385 | . . . . . 6 ⊢ 1 < 4 | |
3 | 1nn0 12485 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
4 | 4nn 12292 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | divfl0 13786 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
6 | 3, 4, 5 | mp2an 689 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
7 | 2, 6 | mpbi 229 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
8 | 1re 11211 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
9 | 4re 12293 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
10 | 4ne0 12317 | . . . . . . 7 ⊢ 4 ≠ 0 | |
11 | redivcl 11930 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ) | |
12 | 11 | flcld 13760 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ) |
13 | 12 | zred 12663 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ) |
14 | 8, 9, 10, 13 | mp3an 1457 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
15 | 14 | eqlei 11321 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
16 | 7, 15 | mp1i 13 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
17 | fvoveq1 7424 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
18 | oveq1 7408 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
19 | 1m1e0 12281 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
20 | 18, 19 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
21 | 20 | oveq1d 7416 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
22 | 2cnne0 12419 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
23 | div0 11899 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (0 / 2) = 0 |
25 | 21, 24 | eqtrdi 2780 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
26 | 16, 17, 25 | 3brtr4d 5170 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
27 | fldiv4lem1div2uz2 13798 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
28 | 26, 27 | jaoi 854 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
29 | 1, 28 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11245 ≤ cle 11246 − cmin 11441 / cdiv 11868 ℕcn 12209 2c2 12264 4c4 12266 ℕ0cn0 12469 ℤ≥cuz 12819 ⌊cfl 13752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fl 13754 |
This theorem is referenced by: gausslemma2dlem0g 27211 |
Copyright terms: Public domain | W3C validator |