Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2 13205
 Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2 (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2
StepHypRef Expression
1 elnn1uz2 12316 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 1lt4 11804 . . . . . 6 1 < 4
3 1nn0 11904 . . . . . . 7 1 ∈ ℕ0
4 4nn 11711 . . . . . . 7 4 ∈ ℕ
5 divfl0 13192 . . . . . . 7 ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0))
63, 4, 5mp2an 691 . . . . . 6 (1 < 4 ↔ (⌊‘(1 / 4)) = 0)
72, 6mpbi 233 . . . . 5 (⌊‘(1 / 4)) = 0
8 1re 10633 . . . . . . 7 1 ∈ ℝ
9 4re 11712 . . . . . . 7 4 ∈ ℝ
10 4ne0 11736 . . . . . . 7 4 ≠ 0
11 redivcl 11351 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
1211flcld 13166 . . . . . . . 8 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ)
1312zred 12078 . . . . . . 7 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ)
148, 9, 10, 13mp3an 1458 . . . . . 6 (⌊‘(1 / 4)) ∈ ℝ
1514eqlei 10742 . . . . 5 ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0)
167, 15mp1i 13 . . . 4 (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0)
17 fvoveq1 7159 . . . 4 (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4)))
18 oveq1 7143 . . . . . . 7 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
19 1m1e0 11700 . . . . . . 7 (1 − 1) = 0
2018, 19eqtrdi 2849 . . . . . 6 (𝑁 = 1 → (𝑁 − 1) = 0)
2120oveq1d 7151 . . . . 5 (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2))
22 2cnne0 11838 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
23 div0 11320 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0)
2422, 23ax-mp 5 . . . . 5 (0 / 2) = 0
2521, 24eqtrdi 2849 . . . 4 (𝑁 = 1 → ((𝑁 − 1) / 2) = 0)
2616, 17, 253brtr4d 5063 . . 3 (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
27 fldiv4lem1div2uz2 13204 . . 3 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
2826, 27jaoi 854 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
291, 28sylbi 220 1 (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   < clt 10667   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℕcn 11628  2c2 11683  4c4 11685  ℕ0cn0 11888  ℤ≥cuz 12234  ⌊cfl 13158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fl 13160 This theorem is referenced by:  gausslemma2dlem0g  25956
 Copyright terms: Public domain W3C validator