| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldiv4lem1div2 | Structured version Visualization version GIF version | ||
| Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 12934 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 2 | 1lt4 12409 | . . . . . 6 ⊢ 1 < 4 | |
| 3 | 1nn0 12510 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn 12316 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | divfl0 13831 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
| 7 | 2, 6 | mpbi 230 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
| 8 | 1re 11228 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 9 | 4re 12317 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 10 | 4ne0 12341 | . . . . . . 7 ⊢ 4 ≠ 0 | |
| 11 | redivcl 11953 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ) | |
| 12 | 11 | flcld 13805 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ) |
| 13 | 12 | zred 12690 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ) |
| 14 | 8, 9, 10, 13 | mp3an 1462 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
| 15 | 14 | eqlei 11338 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
| 16 | 7, 15 | mp1i 13 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
| 17 | fvoveq1 7423 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
| 18 | oveq1 7407 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 19 | 1m1e0 12305 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 20 | 18, 19 | eqtrdi 2785 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 21 | 20 | oveq1d 7415 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
| 22 | 2cnne0 12443 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 23 | div0 11922 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (0 / 2) = 0 |
| 25 | 21, 24 | eqtrdi 2785 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
| 26 | 16, 17, 25 | 3brtr4d 5149 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 27 | fldiv4lem1div2uz2 13843 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
| 28 | 26, 27 | jaoi 857 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 29 | 1, 28 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 ℂcc 11120 ℝcr 11121 0cc0 11122 1c1 11123 < clt 11262 ≤ cle 11263 − cmin 11459 / cdiv 11887 ℕcn 12233 2c2 12288 4c4 12290 ℕ0cn0 12494 ℤ≥cuz 12845 ⌊cfl 13797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-sup 9449 df-inf 9450 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-fl 13799 |
| This theorem is referenced by: gausslemma2dlem0g 27311 |
| Copyright terms: Public domain | W3C validator |