![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldiv4lem1div2 | Structured version Visualization version GIF version |
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn1uz2 12934 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
2 | 1lt4 12413 | . . . . . 6 ⊢ 1 < 4 | |
3 | 1nn0 12513 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
4 | 4nn 12320 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | divfl0 13816 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
6 | 3, 4, 5 | mp2an 690 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
7 | 2, 6 | mpbi 229 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
8 | 1re 11239 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
9 | 4re 12321 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
10 | 4ne0 12345 | . . . . . . 7 ⊢ 4 ≠ 0 | |
11 | redivcl 11958 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ) | |
12 | 11 | flcld 13790 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℤ) |
13 | 12 | zred 12691 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (⌊‘(1 / 4)) ∈ ℝ) |
14 | 8, 9, 10, 13 | mp3an 1457 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
15 | 14 | eqlei 11349 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
16 | 7, 15 | mp1i 13 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
17 | fvoveq1 7436 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
18 | oveq1 7420 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
19 | 1m1e0 12309 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
20 | 18, 19 | eqtrdi 2781 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
21 | 20 | oveq1d 7428 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
22 | 2cnne0 12447 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
23 | div0 11927 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (0 / 2) = 0) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (0 / 2) = 0 |
25 | 21, 24 | eqtrdi 2781 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
26 | 16, 17, 25 | 3brtr4d 5176 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
27 | fldiv4lem1div2uz2 13828 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
28 | 26, 27 | jaoi 855 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
29 | 1, 28 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5144 ‘cfv 6543 (class class class)co 7413 ℂcc 11131 ℝcr 11132 0cc0 11133 1c1 11134 < clt 11273 ≤ cle 11274 − cmin 11469 / cdiv 11896 ℕcn 12237 2c2 12292 4c4 12294 ℕ0cn0 12497 ℤ≥cuz 12847 ⌊cfl 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fl 13784 |
This theorem is referenced by: gausslemma2dlem0g 27308 |
Copyright terms: Public domain | W3C validator |