MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfceil2 Structured version   Visualization version   GIF version

Theorem dfceil2 13744
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
Assertion
Ref Expression
dfceil2 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfceil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ceil 13698 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
2 zre 12503 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
3 lenegcon2 11660 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧𝑧 ≤ -𝑥))
4 peano2re 11328 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
54anim1ci 616 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
6 ltnegcon1 11656 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
75, 6syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
8 recn 11141 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9 1cnd 11150 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 1 ∈ ℂ)
108, 9negdid 11525 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1))
1110adantr 481 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1))
1211breq1d 5115 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧))
13 renegcl 11464 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈ ℝ)
15 neg1rr 12268 . . . . . . . . . . . 12 -1 ∈ ℝ
1615a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℝ)
17 simpr 485 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1814, 16, 17ltaddsubd 11755 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1)))
19 recn 11141 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
20 1cnd 11150 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 1 ∈ ℂ)
2119, 20subnegd 11519 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1))
2221adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1))
2322breq2d 5117 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1)))
2418, 23bitrd 278 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1)))
257, 12, 243bitrd 304 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1)))
263, 25anbi12d 631 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
272, 26sylan2 593 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2827riotabidva 7333 . . . . 5 (𝑥 ∈ ℝ → (𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2928negeqd 11395 . . . 4 (𝑥 ∈ ℝ → -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
30 zbtwnre 12871 . . . . 5 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)))
31 breq2 5109 . . . . . . 7 (𝑦 = -𝑧 → (𝑥𝑦𝑥 ≤ -𝑧))
32 breq1 5108 . . . . . . 7 (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1)))
3331, 32anbi12d 631 . . . . . 6 (𝑦 = -𝑧 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3433zriotaneg 12616 . . . . 5 (∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)) → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3530, 34syl 17 . . . 4 (𝑥 ∈ ℝ → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
36 flval 13699 . . . . . 6 (-𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3713, 36syl 17 . . . . 5 (𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3837negeqd 11395 . . . 4 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3929, 35, 383eqtr4rd 2787 . . 3 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
4039mpteq2ia 5208 . 2 (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
411, 40eqtri 2764 1 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  ∃!wreu 3351   class class class wbr 5105  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  -cneg 11386  cz 12499  cfl 13695  cceil 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fl 13697  df-ceil 13698
This theorem is referenced by:  ceilval2  13745
  Copyright terms: Public domain W3C validator