MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfceil2 Structured version   Visualization version   GIF version

Theorem dfceil2 13801
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
Assertion
Ref Expression
dfceil2 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfceil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ceil 13755 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
2 zre 12533 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
3 lenegcon2 11683 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧𝑧 ≤ -𝑥))
4 peano2re 11347 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
54anim1ci 616 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
6 ltnegcon1 11679 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
75, 6syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
8 recn 11158 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9 1cnd 11169 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 1 ∈ ℂ)
108, 9negdid 11546 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1))
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1))
1211breq1d 5117 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧))
13 renegcl 11485 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈ ℝ)
15 neg1rr 12172 . . . . . . . . . . . 12 -1 ∈ ℝ
1615a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℝ)
17 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1814, 16, 17ltaddsubd 11778 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1)))
19 recn 11158 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
20 1cnd 11169 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 1 ∈ ℂ)
2119, 20subnegd 11540 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1))
2221adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1))
2322breq2d 5119 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1)))
2418, 23bitrd 279 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1)))
257, 12, 243bitrd 305 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1)))
263, 25anbi12d 632 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
272, 26sylan2 593 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2827riotabidva 7363 . . . . 5 (𝑥 ∈ ℝ → (𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2928negeqd 11415 . . . 4 (𝑥 ∈ ℝ → -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
30 zbtwnre 12905 . . . . 5 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)))
31 breq2 5111 . . . . . . 7 (𝑦 = -𝑧 → (𝑥𝑦𝑥 ≤ -𝑧))
32 breq1 5110 . . . . . . 7 (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1)))
3331, 32anbi12d 632 . . . . . 6 (𝑦 = -𝑧 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3433zriotaneg 12647 . . . . 5 (∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)) → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3530, 34syl 17 . . . 4 (𝑥 ∈ ℝ → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
36 flval 13756 . . . . . 6 (-𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3713, 36syl 17 . . . . 5 (𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3837negeqd 11415 . . . 4 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3929, 35, 383eqtr4rd 2775 . . 3 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
4039mpteq2ia 5202 . 2 (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
411, 40eqtri 2752 1 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3352   class class class wbr 5107  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cz 12529  cfl 13752  cceil 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fl 13754  df-ceil 13755
This theorem is referenced by:  ceilval2  13802
  Copyright terms: Public domain W3C validator