MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfceil2 Structured version   Visualization version   GIF version

Theorem dfceil2 13740
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
Assertion
Ref Expression
dfceil2 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfceil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ceil 13694 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
2 zre 12469 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
3 lenegcon2 11619 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧𝑧 ≤ -𝑥))
4 peano2re 11283 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
54anim1ci 616 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
6 ltnegcon1 11615 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
75, 6syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
8 recn 11093 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9 1cnd 11104 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 1 ∈ ℂ)
108, 9negdid 11482 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1))
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1))
1211breq1d 5101 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧))
13 renegcl 11421 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈ ℝ)
15 neg1rr 12108 . . . . . . . . . . . 12 -1 ∈ ℝ
1615a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℝ)
17 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1814, 16, 17ltaddsubd 11714 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1)))
19 recn 11093 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
20 1cnd 11104 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 1 ∈ ℂ)
2119, 20subnegd 11476 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1))
2221adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1))
2322breq2d 5103 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1)))
2418, 23bitrd 279 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1)))
257, 12, 243bitrd 305 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1)))
263, 25anbi12d 632 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
272, 26sylan2 593 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2827riotabidva 7322 . . . . 5 (𝑥 ∈ ℝ → (𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2928negeqd 11351 . . . 4 (𝑥 ∈ ℝ → -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
30 zbtwnre 12841 . . . . 5 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)))
31 breq2 5095 . . . . . . 7 (𝑦 = -𝑧 → (𝑥𝑦𝑥 ≤ -𝑧))
32 breq1 5094 . . . . . . 7 (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1)))
3331, 32anbi12d 632 . . . . . 6 (𝑦 = -𝑧 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3433zriotaneg 12583 . . . . 5 (∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)) → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3530, 34syl 17 . . . 4 (𝑥 ∈ ℝ → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
36 flval 13695 . . . . . 6 (-𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3713, 36syl 17 . . . . 5 (𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3837negeqd 11351 . . . 4 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3929, 35, 383eqtr4rd 2777 . . 3 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
4039mpteq2ia 5186 . 2 (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
411, 40eqtri 2754 1 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344   class class class wbr 5091  cmpt 5172  cfv 6481  crio 7302  (class class class)co 7346  cr 11002  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341  -cneg 11342  cz 12465  cfl 13691  cceil 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fl 13693  df-ceil 13694
This theorem is referenced by:  ceilval2  13741
  Copyright terms: Public domain W3C validator