MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfceil2 Structured version   Visualization version   GIF version

Theorem dfceil2 13808
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
Assertion
Ref Expression
dfceil2 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfceil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ceil 13762 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
2 zre 12540 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
3 lenegcon2 11690 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧𝑧 ≤ -𝑥))
4 peano2re 11354 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
54anim1ci 616 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
6 ltnegcon1 11686 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
75, 6syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
8 recn 11165 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9 1cnd 11176 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 1 ∈ ℂ)
108, 9negdid 11553 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1))
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1))
1211breq1d 5120 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧))
13 renegcl 11492 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈ ℝ)
15 neg1rr 12179 . . . . . . . . . . . 12 -1 ∈ ℝ
1615a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℝ)
17 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1814, 16, 17ltaddsubd 11785 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1)))
19 recn 11165 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
20 1cnd 11176 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 1 ∈ ℂ)
2119, 20subnegd 11547 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1))
2221adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1))
2322breq2d 5122 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1)))
2418, 23bitrd 279 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1)))
257, 12, 243bitrd 305 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1)))
263, 25anbi12d 632 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
272, 26sylan2 593 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2827riotabidva 7366 . . . . 5 (𝑥 ∈ ℝ → (𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2928negeqd 11422 . . . 4 (𝑥 ∈ ℝ → -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
30 zbtwnre 12912 . . . . 5 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)))
31 breq2 5114 . . . . . . 7 (𝑦 = -𝑧 → (𝑥𝑦𝑥 ≤ -𝑧))
32 breq1 5113 . . . . . . 7 (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1)))
3331, 32anbi12d 632 . . . . . 6 (𝑦 = -𝑧 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3433zriotaneg 12654 . . . . 5 (∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)) → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3530, 34syl 17 . . . 4 (𝑥 ∈ ℝ → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
36 flval 13763 . . . . . 6 (-𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3713, 36syl 17 . . . . 5 (𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3837negeqd 11422 . . . 4 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3929, 35, 383eqtr4rd 2776 . . 3 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
4039mpteq2ia 5205 . 2 (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
411, 40eqtri 2753 1 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3354   class class class wbr 5110  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  -cneg 11413  cz 12536  cfl 13759  cceil 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fl 13761  df-ceil 13762
This theorem is referenced by:  ceilval2  13809
  Copyright terms: Public domain W3C validator