| Metamath
Proof Explorer Theorem List (p. 139 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fldivnn0le 13801 | The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
| Theorem | flltdivnn0lt 13802 | The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) | ||
| Theorem | ltdifltdiv 13803 | If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐶 − 𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))) | ||
| Theorem | fldiv4p1lem1div2 13804 | The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | fldiv4lem1div2uz2 13805 | The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | fldiv4lem1div2 13806 | The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | ceilval 13807 | The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) | ||
| Theorem | dfceil2 13808* | Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
| ⊢ ⌈ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | ||
| Theorem | ceilval2 13809* | The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
| ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = (℩𝑦 ∈ ℤ (𝐴 ≤ 𝑦 ∧ 𝑦 < (𝐴 + 1)))) | ||
| Theorem | ceicl 13810 | The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ) | ||
| Theorem | ceilcl 13811 | Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ) | ||
| Theorem | ceilcld 13812 | Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌈‘𝐴) ∈ ℤ) | ||
| Theorem | ceige 13813 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ -(⌊‘-𝐴)) | ||
| Theorem | ceilge 13814 | The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴)) | ||
| Theorem | ceilged 13815 | The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (⌈‘𝐴)) | ||
| Theorem | ceim1l 13816 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) | ||
| Theorem | ceilm1lt 13817 | One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → ((⌈‘𝐴) − 1) < 𝐴) | ||
| Theorem | ceile 13818 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) | ||
| Theorem | ceille 13819 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → (⌈‘𝐴) ≤ 𝐵) | ||
| Theorem | ceilid 13820 | An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴) | ||
| Theorem | ceilidz 13821 | A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴)) | ||
| Theorem | flleceil 13822 | The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ (⌈‘𝐴)) | ||
| Theorem | fleqceilz 13823 | A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴))) | ||
| Theorem | quoremz 13824 | Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16380. (Contributed by NM, 14-Aug-2008.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | quoremnn0 13825 | Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | quoremnn0ALT 13826 | Alternate proof of quoremnn0 13825 not using quoremz 13824. TODO - Keep either quoremnn0ALT 13826 (if we don't keep quoremz 13824) or quoremnn0 13825? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | intfrac2 13827 | Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13855? (Contributed by NM, 16-Aug-2008.) |
| ⊢ 𝑍 = (⌊‘𝐴) & ⊢ 𝐹 = (𝐴 − 𝑍) ⇒ ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) | ||
| Theorem | intfracq 13828 | Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13827. (Contributed by NM, 16-Aug-2008.) |
| ⊢ 𝑍 = (⌊‘(𝑀 / 𝑁)) & ⊢ 𝐹 = ((𝑀 / 𝑁) − 𝑍) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹 ∧ 𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹))) | ||
| Theorem | fldiv 13829 | Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁))) | ||
| Theorem | fldiv2 13830 | Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁)))) | ||
| Theorem | fznnfl 13831 | Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.) |
| ⊢ (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | uzsup 13832 | An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) | ||
| Theorem | ioopnfsup 13833 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞) | ||
| Theorem | icopnfsup 13834 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) | ||
| Theorem | rpsup 13835 | The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ+, ℝ*, < ) = +∞ | ||
| Theorem | resup 13836 | The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ, ℝ*, < ) = +∞ | ||
| Theorem | xrsup 13837 | The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ*, ℝ*, < ) = +∞ | ||
| Syntax | cmo 13838 | Extend class notation with the modulo operation. |
| class mod | ||
| Definition | df-mod 13839* | Define the modulo (remainder) operation. See modval 13840 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1 (ex-mod 30385). (Contributed by NM, 10-Nov-2008.) |
| ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) | ||
| Theorem | modval 13840 | The value of the modulo operation. The modulo congruence notation of number theory, 𝐽≡𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | ||
| Theorem | modvalr 13841 | The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵))) | ||
| Theorem | modcl 13842 | Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ) | ||
| Theorem | flpmodeq 13843 | Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) | ||
| Theorem | modcld 13844 | Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) | ||
| Theorem | mod0 13845 | 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ)) | ||
| Theorem | mulmod0 13846 | The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0) | ||
| Theorem | negmod0 13847 | 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0)) | ||
| Theorem | modge0 13848 | The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵)) | ||
| Theorem | modlt 13849 | The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵) | ||
| Theorem | modelico 13850 | Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ (0[,)𝐵)) | ||
| Theorem | moddiffl 13851 | Value of the modulo operation rewritten to give two ways of expressing the quotient when "𝐴 is divided by 𝐵 using Euclidean division." Multiplying both sides by 𝐵, this implies that 𝐴 mod 𝐵 differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 6-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | ||
| Theorem | moddifz 13852 | The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) | ||
| Theorem | modfrac 13853 | The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) | ||
| Theorem | flmod 13854 | The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1))) | ||
| Theorem | intfrac 13855 | Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1))) | ||
| Theorem | zmod10 13856 | An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 mod 1) = 0) | ||
| Theorem | zmod1congr 13857 | Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1)) | ||
| Theorem | modmulnn 13858 | Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) | ||
| Theorem | modvalp1 13859 | The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵)) | ||
| Theorem | zmodcl 13860 | Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) | ||
| Theorem | zmodcld 13861 | Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0) | ||
| Theorem | zmodfz 13862 | An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) | ||
| Theorem | zmodfzo 13863 | An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) | ||
| Theorem | zmodfzp1 13864 | An integer mod 𝐵 lies in the first 𝐵 + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵)) | ||
| Theorem | modid 13865 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | ||
| Theorem | modid0 13866 | A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018.) |
| ⊢ (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0) | ||
| Theorem | modid2 13867 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | zmodid2 13868 | Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) | ||
| Theorem | zmodidfzo 13869 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) | ||
| Theorem | zmodidfzoimp 13870 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) | ||
| Theorem | 0mod 13871 | Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014.) |
| ⊢ (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0) | ||
| Theorem | 1mod 13872 | Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | ||
| Theorem | modabs 13873 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) ∧ 𝐵 ≤ 𝐶) → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | ||
| Theorem | modabs2 13874 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc 13875 | The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc2 13876 | The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modadd1 13877 | Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | ||
| Theorem | modaddb 13878 | Addition property of the modulo operation. Biconditional version of modadd1 13877 by applying modadd1 13877 twice. (Contributed by AV, 14-Nov-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))) | ||
| Theorem | modaddid 13879 | The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ 𝐾 ∈ ℤ) → (((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁) ↔ 𝑋 = 𝑌)) | ||
| Theorem | modaddabs 13880 | Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | ||
| Theorem | modaddmod 13881 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | ||
| Theorem | muladdmodid 13882 | The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | mulp1mod1 13883 | The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | ||
| Theorem | muladdmod 13884 | A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) | ||
| Theorem | modmuladd 13885* | Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdim 13886* | Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdnn0 13887* | Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | negmod 13888 | The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | ||
| Theorem | m1modnnsub1 13889 | Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | ||
| Theorem | m1modge3gt1 13890 | Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) | ||
| Theorem | addmodid 13891 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | addmodidr 13892 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | ||
| Theorem | modadd2mod 13893 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | ||
| Theorem | modm1p1mod0 13894 | If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | ||
| Theorem | modltm1p1mod 13895 | If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | ||
| Theorem | modmul1 13896 | Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | ||
| Theorem | modmul12d 13897 | Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | ||
| Theorem | modnegd 13898 | Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | ||
| Theorem | modadd12d 13899 | Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | ||
| Theorem | modsub12d 13900 | Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |