| Metamath
Proof Explorer Theorem List (p. 139 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | modabs2 13801 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc 13802 | The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc2 13803 | The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modadd1 13804 | Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | ||
| Theorem | modaddb 13805 | Addition property of the modulo operation. Biconditional version of modadd1 13804 by applying modadd1 13804 twice. (Contributed by AV, 14-Nov-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))) | ||
| Theorem | modaddid 13806 | The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ 𝐾 ∈ ℤ) → (((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁) ↔ 𝑋 = 𝑌)) | ||
| Theorem | modaddabs 13807 | Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | ||
| Theorem | modaddmod 13808 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | ||
| Theorem | muladdmodid 13809 | The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | mulp1mod1 13810 | The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | ||
| Theorem | muladdmod 13811 | A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) | ||
| Theorem | modmuladd 13812* | Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdim 13813* | Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdnn0 13814* | Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | negmod 13815 | The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | ||
| Theorem | m1modnnsub1 13816 | Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | ||
| Theorem | m1modge3gt1 13817 | Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) | ||
| Theorem | addmodid 13818 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | addmodidr 13819 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | ||
| Theorem | modadd2mod 13820 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | ||
| Theorem | modm1p1mod0 13821 | If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | ||
| Theorem | modltm1p1mod 13822 | If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | ||
| Theorem | modmul1 13823 | Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | ||
| Theorem | modmul12d 13824 | Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | ||
| Theorem | modnegd 13825 | Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | ||
| Theorem | modadd12d 13826 | Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | ||
| Theorem | modsub12d 13827 | Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | ||
| Theorem | modsubmod 13828 | The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | modsubmodmod 13829 | The difference of a real number modulo a positive real number and another real number modulo this positive real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | 2txmodxeq0 13830 | Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ (𝑋 ∈ ℝ+ → ((2 · 𝑋) mod 𝑋) = 0) | ||
| Theorem | 2submod 13831 | If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | modifeq2int 13832 | If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | ||
| Theorem | modaddmodup 13833 | The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| Theorem | modaddmodlo 13834 | The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| Theorem | modmulmod 13835 | The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
| Theorem | modmulmodr 13836 | The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
| Theorem | modaddmulmod 13837 | The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | ||
| Theorem | moddi 13838 | Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | ||
| Theorem | modsubdir 13839 | Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | ||
| Theorem | modeqmodmin 13840 | A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | ||
| Theorem | modirr 13841 | A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) | ||
| Theorem | modfzo0difsn 13842* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
| Theorem | modsumfzodifsn 13843 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
| Theorem | modlteq 13844 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | addmodlteq 13845 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation ∥ can be used, see addmodlteqALT 16228. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | om2uz0i 13846* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐺‘∅) = 𝐶 | ||
| Theorem | om2uzsuci 13847* | The value of 𝐺 (see om2uz0i 13846) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
| Theorem | om2uzuzi 13848* | The value 𝐺 (see om2uz0i 13846) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
| Theorem | om2uzlti 13849* | Less-than relation for 𝐺 (see om2uz0i 13846). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | om2uzlt2i 13850* | The mapping 𝐺 (see om2uz0i 13846) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | om2uzrani 13851* | Range of 𝐺 (see om2uz0i 13846). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ran 𝐺 = (ℤ≥‘𝐶) | ||
| Theorem | om2uzf1oi 13852* | 𝐺 (see om2uz0i 13846) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) | ||
| Theorem | om2uzisoi 13853* | 𝐺 (see om2uz0i 13846) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) | ||
| Theorem | om2uzoi 13854* | An alternative definition of 𝐺 in terms of df-oi 9391. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) | ||
| Theorem | om2uzrdg 13855* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13846. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ ω → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
| Theorem | uzrdglem 13856* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
| Theorem | uzrdgfni 13857* | The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13855. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ 𝑆 Fn (ℤ≥‘𝐶) | ||
| Theorem | uzrdg0i 13858* | Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13855. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝑆‘𝐶) = 𝐴 | ||
| Theorem | uzrdgsuci 13859* | Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13855. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆‘𝐵))) | ||
| Theorem | ltweuz 13860 | < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ < We (ℤ≥‘𝐴) | ||
| Theorem | ltwenn 13861 | Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
| ⊢ < We ℕ | ||
| Theorem | ltwefz 13862 | Less than well-orders a set of finite integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
| ⊢ < We (𝑀...𝑁) | ||
| Theorem | uzenom 13863 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
| Theorem | uzinf 13864 | An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin) | ||
| Theorem | nnnfi 13865 | The set of positive integers is infinite. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ¬ ℕ ∈ Fin | ||
| Theorem | uzrdgxfr 13866* | Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) & ⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) & ⊢ 𝐴 ∈ ℤ & ⊢ 𝐵 ∈ ℤ ⇒ ⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) | ||
| Theorem | fzennn 13867 | The cardinality of a finite set of sequential integers. (See om2uz0i 13846 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
| Theorem | fzen2 13868 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
| Theorem | cardfz 13869 | The cardinality of a finite set of sequential integers. (See om2uz0i 13846 for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡𝐺‘𝑁)) | ||
| Theorem | hashgf1o 13870 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
| Theorem | fzfi 13871 | A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ (𝑀...𝑁) ∈ Fin | ||
| Theorem | fzfid 13872 | Commonly used special case of fzfi 13871. (Contributed by Mario Carneiro, 25-May-2014.) |
| ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
| Theorem | fzofi 13873 | Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝑀..^𝑁) ∈ Fin | ||
| Theorem | fsequb 13874* | The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | ||
| Theorem | fsequb2 13875* | The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | ||
| Theorem | fseqsupcl 13876 | The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) | ||
| Theorem | fseqsupubi 13877 | The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.) |
| ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) | ||
| Theorem | nn0ennn 13878 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| ⊢ ℕ0 ≈ ℕ | ||
| Theorem | nnenom 13879 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ℕ ≈ ω | ||
| Theorem | nnct 13880 | ℕ is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ ℕ ≼ ω | ||
| Theorem | uzindi 13881* | Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | axdc4uzlem 13882* | Lemma for axdc4uz 13883. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 ∈ V & ⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) & ⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | axdc4uz 13883* | A version of axdc4 10339 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | ssnn0fi 13884* | A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.) |
| ⊢ (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | ||
| Theorem | rabssnn0fi 13885* | A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
| ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) | ||
| Theorem | uzsinds 13886* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
| Theorem | nnsinds 13887* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
| Theorem | nn0sinds 13888* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
| Theorem | fsuppmapnn0fiublem 13889* | Lemma for fsuppmapnn0fiub 13890 and fsuppmapnn0fiubex 13891. (Contributed by AV, 2-Oct-2019.) |
| ⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → 𝑆 ∈ ℕ0)) | ||
| Theorem | fsuppmapnn0fiub 13890* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.) |
| ⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))) | ||
| Theorem | fsuppmapnn0fiubex 13891* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.) |
| ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) | ||
| Theorem | fsuppmapnn0fiub0 13892* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.) |
| ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓‘𝑥) = 𝑍))) | ||
| Theorem | suppssfz 13893* | Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆)) | ||
| Theorem | fsuppmapnn0ub 13894* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
| ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) | ||
| Theorem | fsuppmapnn0fz 13895* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.) |
| ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) | ||
| Theorem | mptnn0fsupp 13896* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
| Theorem | mptnn0fsuppd 13897* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
| Theorem | mptnn0fsuppr 13898* | A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | ||
| Theorem | f13idfv 13899 | A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ 𝐴 = (0...2) ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) | ||
| Syntax | cseq 13900 | Extend class notation with recursive sequence builder. |
| class seq𝑀( + , 𝐹) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |