| Metamath
Proof Explorer Theorem List (p. 139 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfceil2 13801* | Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
| ⊢ ⌈ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | ||
| Theorem | ceilval2 13802* | The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
| ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = (℩𝑦 ∈ ℤ (𝐴 ≤ 𝑦 ∧ 𝑦 < (𝐴 + 1)))) | ||
| Theorem | ceicl 13803 | The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ) | ||
| Theorem | ceilcl 13804 | Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ) | ||
| Theorem | ceilcld 13805 | Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌈‘𝐴) ∈ ℤ) | ||
| Theorem | ceige 13806 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ -(⌊‘-𝐴)) | ||
| Theorem | ceilge 13807 | The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴)) | ||
| Theorem | ceilged 13808 | The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (⌈‘𝐴)) | ||
| Theorem | ceim1l 13809 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) | ||
| Theorem | ceilm1lt 13810 | One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → ((⌈‘𝐴) − 1) < 𝐴) | ||
| Theorem | ceile 13811 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) | ||
| Theorem | ceille 13812 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → (⌈‘𝐴) ≤ 𝐵) | ||
| Theorem | ceilid 13813 | An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴) | ||
| Theorem | ceilidz 13814 | A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴)) | ||
| Theorem | flleceil 13815 | The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ (⌈‘𝐴)) | ||
| Theorem | fleqceilz 13816 | A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴))) | ||
| Theorem | quoremz 13817 | Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16373. (Contributed by NM, 14-Aug-2008.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | quoremnn0 13818 | Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | quoremnn0ALT 13819 | Alternate proof of quoremnn0 13818 not using quoremz 13817. TODO - Keep either quoremnn0ALT 13819 (if we don't keep quoremz 13817) or quoremnn0 13818? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
| Theorem | intfrac2 13820 | Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13848? (Contributed by NM, 16-Aug-2008.) |
| ⊢ 𝑍 = (⌊‘𝐴) & ⊢ 𝐹 = (𝐴 − 𝑍) ⇒ ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) | ||
| Theorem | intfracq 13821 | Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13820. (Contributed by NM, 16-Aug-2008.) |
| ⊢ 𝑍 = (⌊‘(𝑀 / 𝑁)) & ⊢ 𝐹 = ((𝑀 / 𝑁) − 𝑍) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹 ∧ 𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹))) | ||
| Theorem | fldiv 13822 | Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁))) | ||
| Theorem | fldiv2 13823 | Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁)))) | ||
| Theorem | fznnfl 13824 | Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.) |
| ⊢ (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | uzsup 13825 | An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) | ||
| Theorem | ioopnfsup 13826 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞) | ||
| Theorem | icopnfsup 13827 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) | ||
| Theorem | rpsup 13828 | The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ+, ℝ*, < ) = +∞ | ||
| Theorem | resup 13829 | The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ, ℝ*, < ) = +∞ | ||
| Theorem | xrsup 13830 | The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ sup(ℝ*, ℝ*, < ) = +∞ | ||
| Syntax | cmo 13831 | Extend class notation with the modulo operation. |
| class mod | ||
| Definition | df-mod 13832* | Define the modulo (remainder) operation. See modval 13833 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1 (ex-mod 30378). (Contributed by NM, 10-Nov-2008.) |
| ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) | ||
| Theorem | modval 13833 | The value of the modulo operation. The modulo congruence notation of number theory, 𝐽≡𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | ||
| Theorem | modvalr 13834 | The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵))) | ||
| Theorem | modcl 13835 | Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ) | ||
| Theorem | flpmodeq 13836 | Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) | ||
| Theorem | modcld 13837 | Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) | ||
| Theorem | mod0 13838 | 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ)) | ||
| Theorem | mulmod0 13839 | The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0) | ||
| Theorem | negmod0 13840 | 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0)) | ||
| Theorem | modge0 13841 | The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵)) | ||
| Theorem | modlt 13842 | The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵) | ||
| Theorem | modelico 13843 | Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ (0[,)𝐵)) | ||
| Theorem | moddiffl 13844 | Value of the modulo operation rewritten to give two ways of expressing the quotient when "𝐴 is divided by 𝐵 using Euclidean division." Multiplying both sides by 𝐵, this implies that 𝐴 mod 𝐵 differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 6-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | ||
| Theorem | moddifz 13845 | The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) | ||
| Theorem | modfrac 13846 | The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) | ||
| Theorem | flmod 13847 | The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1))) | ||
| Theorem | intfrac 13848 | Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1))) | ||
| Theorem | zmod10 13849 | An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 mod 1) = 0) | ||
| Theorem | zmod1congr 13850 | Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1)) | ||
| Theorem | modmulnn 13851 | Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) | ||
| Theorem | modvalp1 13852 | The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵)) | ||
| Theorem | zmodcl 13853 | Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) | ||
| Theorem | zmodcld 13854 | Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0) | ||
| Theorem | zmodfz 13855 | An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) | ||
| Theorem | zmodfzo 13856 | An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) | ||
| Theorem | zmodfzp1 13857 | An integer mod 𝐵 lies in the first 𝐵 + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵)) | ||
| Theorem | modid 13858 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | ||
| Theorem | modid0 13859 | A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018.) |
| ⊢ (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0) | ||
| Theorem | modid2 13860 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | zmodid2 13861 | Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) | ||
| Theorem | zmodidfzo 13862 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) | ||
| Theorem | zmodidfzoimp 13863 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
| ⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) | ||
| Theorem | 0mod 13864 | Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014.) |
| ⊢ (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0) | ||
| Theorem | 1mod 13865 | Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | ||
| Theorem | modabs 13866 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) ∧ 𝐵 ≤ 𝐶) → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | ||
| Theorem | modabs2 13867 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc 13868 | The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modcyc2 13869 | The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
| Theorem | modadd1 13870 | Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | ||
| Theorem | modaddb 13871 | Addition property of the modulo operation. Biconditional version of modadd1 13870 by applying modadd1 13870 twice. (Contributed by AV, 14-Nov-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))) | ||
| Theorem | modaddid 13872 | The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ 𝐾 ∈ ℤ) → (((𝑋 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁) ↔ 𝑋 = 𝑌)) | ||
| Theorem | modaddabs 13873 | Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | ||
| Theorem | modaddmod 13874 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | ||
| Theorem | muladdmodid 13875 | The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | mulp1mod1 13876 | The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | ||
| Theorem | muladdmod 13877 | A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) | ||
| Theorem | modmuladd 13878* | Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdim 13879* | Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | modmuladdnn0 13880* | Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
| Theorem | negmod 13881 | The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | ||
| Theorem | m1modnnsub1 13882 | Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | ||
| Theorem | m1modge3gt1 13883 | Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) | ||
| Theorem | addmodid 13884 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | ||
| Theorem | addmodidr 13885 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | ||
| Theorem | modadd2mod 13886 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | ||
| Theorem | modm1p1mod0 13887 | If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | ||
| Theorem | modltm1p1mod 13888 | If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | ||
| Theorem | modmul1 13889 | Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | ||
| Theorem | modmul12d 13890 | Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | ||
| Theorem | modnegd 13891 | Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | ||
| Theorem | modadd12d 13892 | Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | ||
| Theorem | modsub12d 13893 | Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | ||
| Theorem | modsubmod 13894 | The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | modsubmodmod 13895 | The difference of a real number modulo a positive real number and another real number modulo this positive real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | 2txmodxeq0 13896 | Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ (𝑋 ∈ ℝ+ → ((2 · 𝑋) mod 𝑋) = 0) | ||
| Theorem | 2submod 13897 | If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | modifeq2int 13898 | If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | ||
| Theorem | modaddmodup 13899 | The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| Theorem | modaddmodlo 13900 | The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |