| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . 4
⊢ (𝐵 ∈ ( < Chain 𝐴) → 𝐵 ∈ ( < Chain 𝐴)) |
| 2 | 1 | chnwrd 18506 |
. . 3
⊢ (𝐵 ∈ ( < Chain 𝐴) → 𝐵 ∈ Word 𝐴) |
| 3 | | revcl 14660 |
. . 3
⊢ (𝐵 ∈ Word 𝐴 → (reverse‘𝐵) ∈ Word 𝐴) |
| 4 | 2, 3 | syl 17 |
. 2
⊢ (𝐵 ∈ ( < Chain 𝐴) → (reverse‘𝐵) ∈ Word 𝐴) |
| 5 | | simpl 482 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝐵 ∈ ( < Chain 𝐴)) |
| 6 | | fzossfz 13570 |
. . . . . . . . . . . . . . 15
⊢
(0..^(♯‘(reverse‘𝐵))) ⊆
(0...(♯‘(reverse‘𝐵))) |
| 7 | 6 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ( < Chain 𝐴) →
(0..^(♯‘(reverse‘𝐵))) ⊆
(0...(♯‘(reverse‘𝐵)))) |
| 8 | | wrddm 14420 |
. . . . . . . . . . . . . . 15
⊢
((reverse‘𝐵)
∈ Word 𝐴 → dom
(reverse‘𝐵) =
(0..^(♯‘(reverse‘𝐵)))) |
| 9 | 4, 8 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ( < Chain 𝐴) → dom (reverse‘𝐵) =
(0..^(♯‘(reverse‘𝐵)))) |
| 10 | | revlen 14661 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ Word 𝐴 → (♯‘(reverse‘𝐵)) = (♯‘𝐵)) |
| 11 | 2, 10 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ ( < Chain 𝐴) → (♯‘(reverse‘𝐵)) = (♯‘𝐵)) |
| 12 | 11 | eqcomd 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ( < Chain 𝐴) → (♯‘𝐵) = (♯‘(reverse‘𝐵))) |
| 13 | 12 | oveq2d 7357 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ( < Chain 𝐴) → (0...(♯‘𝐵)) =
(0...(♯‘(reverse‘𝐵)))) |
| 14 | 7, 9, 13 | 3sstr4d 3988 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ( < Chain 𝐴) → dom (reverse‘𝐵) ⊆
(0...(♯‘𝐵))) |
| 15 | 14 | ssdifd 4093 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ( < Chain 𝐴) → (dom (reverse‘𝐵) ∖ {0}) ⊆
((0...(♯‘𝐵))
∖ {0})) |
| 16 | 15 | sselda 3932 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ ((0...(♯‘𝐵)) ∖
{0})) |
| 17 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝐵 ∈ Word 𝐴) |
| 18 | | lencl 14432 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Word 𝐴 → (♯‘𝐵) ∈
ℕ0) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (♯‘𝐵) ∈
ℕ0) |
| 20 | | fz0dif1 13498 |
. . . . . . . . . . . 12
⊢
((♯‘𝐵)
∈ ℕ0 → ((0...(♯‘𝐵)) ∖ {0}) = (1...(♯‘𝐵))) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
((0...(♯‘𝐵))
∖ {0}) = (1...(♯‘𝐵))) |
| 22 | 16, 21 | eleqtrd 2831 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ (1...(♯‘𝐵))) |
| 23 | | ubmelfzo 13622 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐵))
→ ((♯‘𝐵)
− 𝑛) ∈
(0..^(♯‘𝐵))) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((♯‘𝐵) − 𝑛) ∈ (0..^(♯‘𝐵))) |
| 25 | | wrddm 14420 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Word 𝐴 → dom 𝐵 = (0..^(♯‘𝐵))) |
| 26 | 17, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → dom 𝐵 = (0..^(♯‘𝐵))) |
| 27 | 24, 26 | eleqtrrd 2832 |
. . . . . . . 8
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((♯‘𝐵) − 𝑛) ∈ dom 𝐵) |
| 28 | 19 | nn0cnd 12436 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (♯‘𝐵) ∈
ℂ) |
| 29 | | eldifi 4079 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (dom
(reverse‘𝐵) ∖
{0}) → 𝑛 ∈ dom
(reverse‘𝐵)) |
| 30 | 29 | anim2i 617 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ dom (reverse‘𝐵))) |
| 31 | 2, 3, 8 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ( < Chain 𝐴) → dom (reverse‘𝐵) =
(0..^(♯‘(reverse‘𝐵)))) |
| 32 | 31 | eleq2d 2815 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ( < Chain 𝐴) → (𝑛 ∈ dom (reverse‘𝐵) ↔ 𝑛 ∈
(0..^(♯‘(reverse‘𝐵))))) |
| 33 | 32 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ dom (reverse‘𝐵)) → 𝑛 ∈
(0..^(♯‘(reverse‘𝐵)))) |
| 34 | | elfzoelz 13551 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(0..^(♯‘(reverse‘𝐵))) → 𝑛 ∈ ℤ) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ dom (reverse‘𝐵)) → 𝑛 ∈ ℤ) |
| 36 | | zcn 12465 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
| 37 | 30, 35, 36 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ ℂ) |
| 38 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ dom (reverse‘𝐵)) |
| 39 | 17, 3 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (reverse‘𝐵) ∈ Word 𝐴) |
| 40 | | wrdlndm 14429 |
. . . . . . . . . . . . 13
⊢
((reverse‘𝐵)
∈ Word 𝐴 →
(♯‘(reverse‘𝐵)) ∉ dom (reverse‘𝐵)) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
(♯‘(reverse‘𝐵)) ∉ dom (reverse‘𝐵)) |
| 42 | 17, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
(♯‘(reverse‘𝐵)) = (♯‘𝐵)) |
| 43 | | eqidd 2731 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → dom
(reverse‘𝐵) = dom
(reverse‘𝐵)) |
| 44 | 42, 43 | neleq12d 3035 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
((♯‘(reverse‘𝐵)) ∉ dom (reverse‘𝐵) ↔ (♯‘𝐵) ∉ dom
(reverse‘𝐵))) |
| 45 | 41, 44 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (♯‘𝐵) ∉ dom
(reverse‘𝐵)) |
| 46 | | elnelne2 3042 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ dom (reverse‘𝐵) ∧ (♯‘𝐵) ∉ dom
(reverse‘𝐵)) →
𝑛 ≠ (♯‘𝐵)) |
| 47 | 38, 45, 46 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ≠ (♯‘𝐵)) |
| 48 | 47 | necomd 2981 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (♯‘𝐵) ≠ 𝑛) |
| 49 | 28, 37, 48 | subne0d 11473 |
. . . . . . . 8
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((♯‘𝐵) − 𝑛) ≠ 0) |
| 50 | 27, 49 | eldifsnd 4737 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((♯‘𝐵) − 𝑛) ∈ (dom 𝐵 ∖ {0})) |
| 51 | 5, 50 | chnltm1 18507 |
. . . . . 6
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵‘(((♯‘𝐵) − 𝑛) − 1)) < (𝐵‘((♯‘𝐵) − 𝑛))) |
| 52 | | 1cnd 11099 |
. . . . . . . 8
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 1 ∈
ℂ) |
| 53 | 28, 52, 37 | sub32d 11496 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
(((♯‘𝐵) −
1) − 𝑛) =
(((♯‘𝐵) −
𝑛) −
1)) |
| 54 | 53 | fveq2d 6821 |
. . . . . 6
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵‘(((♯‘𝐵) − 1) − 𝑛)) = (𝐵‘(((♯‘𝐵) − 𝑛) − 1))) |
| 55 | 28, 37, 52 | nnncan2d 11499 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) →
(((♯‘𝐵) −
1) − (𝑛 − 1)) =
((♯‘𝐵) −
𝑛)) |
| 56 | 55 | fveq2d 6821 |
. . . . . 6
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1))) = (𝐵‘((♯‘𝐵) − 𝑛))) |
| 57 | 51, 54, 56 | 3brtr4d 5121 |
. . . . 5
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵‘(((♯‘𝐵) − 1) − 𝑛)) < (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))) |
| 58 | | fvex 6830 |
. . . . . 6
⊢ (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1))) ∈
V |
| 59 | | fvex 6830 |
. . . . . 6
⊢ (𝐵‘(((♯‘𝐵) − 1) − 𝑛)) ∈ V |
| 60 | 58, 59 | brcnv 5820 |
. . . . 5
⊢ ((𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))◡ < (𝐵‘(((♯‘𝐵) − 1) − 𝑛)) ↔ (𝐵‘(((♯‘𝐵) − 1) − 𝑛)) < (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))) |
| 61 | 57, 60 | sylibr 234 |
. . . 4
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))◡ < (𝐵‘(((♯‘𝐵) − 1) − 𝑛))) |
| 62 | 39, 8 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → dom
(reverse‘𝐵) =
(0..^(♯‘(reverse‘𝐵)))) |
| 63 | 38, 62 | eleqtrd 2831 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈
(0..^(♯‘(reverse‘𝐵)))) |
| 64 | | elfzonn0 13599 |
. . . . . . . . 9
⊢ (𝑛 ∈
(0..^(♯‘(reverse‘𝐵))) → 𝑛 ∈ ℕ0) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ ℕ0) |
| 66 | | eldifsni 4740 |
. . . . . . . . 9
⊢ (𝑛 ∈ (dom
(reverse‘𝐵) ∖
{0}) → 𝑛 ≠
0) |
| 67 | 66 | adantl 481 |
. . . . . . . 8
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ≠ 0) |
| 68 | | elnnne0 12387 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0
∧ 𝑛 ≠
0)) |
| 69 | 65, 67, 68 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ ℕ) |
| 70 | | nnm1nn0 12414 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝑛 − 1) ∈
ℕ0) |
| 72 | | elfzo0le 13595 |
. . . . . . . 8
⊢ (𝑛 ∈
(0..^(♯‘(reverse‘𝐵))) → 𝑛 ≤ (♯‘(reverse‘𝐵))) |
| 73 | 63, 72 | syl 17 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ≤ (♯‘(reverse‘𝐵))) |
| 74 | 37, 52 | npcand 11468 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((𝑛 − 1) + 1) = 𝑛) |
| 75 | 42 | eqcomd 2736 |
. . . . . . 7
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (♯‘𝐵) =
(♯‘(reverse‘𝐵))) |
| 76 | 73, 74, 75 | 3brtr4d 5121 |
. . . . . 6
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((𝑛 − 1) + 1) ≤ (♯‘𝐵)) |
| 77 | | nn0p1elfzo 13594 |
. . . . . 6
⊢ (((𝑛 − 1) ∈
ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ ((𝑛 − 1) + 1) ≤
(♯‘𝐵)) →
(𝑛 − 1) ∈
(0..^(♯‘𝐵))) |
| 78 | 71, 19, 76, 77 | syl3anc 1373 |
. . . . 5
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → (𝑛 − 1) ∈ (0..^(♯‘𝐵))) |
| 79 | | revfv 14662 |
. . . . 5
⊢ ((𝐵 ∈ Word 𝐴 ∧ (𝑛 − 1) ∈ (0..^(♯‘𝐵))) → ((reverse‘𝐵)‘(𝑛 − 1)) = (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))) |
| 80 | 17, 78, 79 | syl2anc 584 |
. . . 4
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((reverse‘𝐵)‘(𝑛 − 1)) = (𝐵‘(((♯‘𝐵) − 1) − (𝑛 − 1)))) |
| 81 | 11 | oveq2d 7357 |
. . . . . . . . 9
⊢ (𝐵 ∈ ( < Chain 𝐴) →
(0..^(♯‘(reverse‘𝐵))) = (0..^(♯‘𝐵))) |
| 82 | 31, 81 | eqtrd 2765 |
. . . . . . . 8
⊢ (𝐵 ∈ ( < Chain 𝐴) → dom (reverse‘𝐵) = (0..^(♯‘𝐵))) |
| 83 | 82 | eleq2d 2815 |
. . . . . . 7
⊢ (𝐵 ∈ ( < Chain 𝐴) → (𝑛 ∈ dom (reverse‘𝐵) ↔ 𝑛 ∈ (0..^(♯‘𝐵)))) |
| 84 | 29, 83 | imbitrid 244 |
. . . . . 6
⊢ (𝐵 ∈ ( < Chain 𝐴) → (𝑛 ∈ (dom (reverse‘𝐵) ∖ {0}) → 𝑛 ∈ (0..^(♯‘𝐵)))) |
| 85 | 84 | imp 406 |
. . . . 5
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → 𝑛 ∈ (0..^(♯‘𝐵))) |
| 86 | | revfv 14662 |
. . . . 5
⊢ ((𝐵 ∈ Word 𝐴 ∧ 𝑛 ∈ (0..^(♯‘𝐵))) → ((reverse‘𝐵)‘𝑛) = (𝐵‘(((♯‘𝐵) − 1) − 𝑛))) |
| 87 | 17, 85, 86 | syl2anc 584 |
. . . 4
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((reverse‘𝐵)‘𝑛) = (𝐵‘(((♯‘𝐵) − 1) − 𝑛))) |
| 88 | 61, 80, 87 | 3brtr4d 5121 |
. . 3
⊢ ((𝐵 ∈ ( < Chain 𝐴) ∧ 𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})) → ((reverse‘𝐵)‘(𝑛 − 1))◡ < ((reverse‘𝐵)‘𝑛)) |
| 89 | 88 | ralrimiva 3122 |
. 2
⊢ (𝐵 ∈ ( < Chain 𝐴) → ∀𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})((reverse‘𝐵)‘(𝑛 − 1))◡ < ((reverse‘𝐵)‘𝑛)) |
| 90 | | ischn 18505 |
. 2
⊢
((reverse‘𝐵)
∈ (◡ < Chain 𝐴) ↔ ((reverse‘𝐵) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (reverse‘𝐵) ∖ {0})((reverse‘𝐵)‘(𝑛 − 1))◡ < ((reverse‘𝐵)‘𝑛))) |
| 91 | 4, 89, 90 | sylanbrc 583 |
1
⊢ (𝐵 ∈ ( < Chain 𝐴) → (reverse‘𝐵) ∈ (◡ < Chain 𝐴)) |