Proof of Theorem chnerlem2
| Step | Hyp | Ref
| Expression |
| 1 | | chner.1 |
. . . 4
⊢ (𝜑 → ∼ Er 𝐴) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → ∼ Er 𝐴) |
| 3 | | chner.2 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴)) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐶 ∈ ( ∼ Chain 𝐴)) |
| 5 | | chner.3 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐽 ∈ (0..^(♯‘𝐶))) |
| 7 | | fzofzp1 13664 |
. . . . 5
⊢ (𝐽 ∈
(0..^(♯‘𝐶))
→ (𝐽 + 1) ∈
(0...(♯‘𝐶))) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 9 | 4, 8 | pfxchn 18516 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐶 prefix (𝐽 + 1)) ∈ ( ∼ Chain 𝐴)) |
| 10 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝜑) |
| 11 | | animorrl 982 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐼 ∈ (0..^𝐽) ∨ 𝐼 = 𝐽)) |
| 12 | | elfzonn0 13607 |
. . . . . . . . 9
⊢ (𝐽 ∈
(0..^(♯‘𝐶))
→ 𝐽 ∈
ℕ0) |
| 13 | | nn0uz 12774 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 14 | 13 | eleq2i 2823 |
. . . . . . . . . 10
⊢ (𝐽 ∈ ℕ0
↔ 𝐽 ∈
(ℤ≥‘0)) |
| 15 | 14 | biimpi 216 |
. . . . . . . . 9
⊢ (𝐽 ∈ ℕ0
→ 𝐽 ∈
(ℤ≥‘0)) |
| 16 | 5, 12, 15 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈
(ℤ≥‘0)) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐽 ∈
(ℤ≥‘0)) |
| 18 | | fzosplitsni 13679 |
. . . . . . 7
⊢ (𝐽 ∈
(ℤ≥‘0) → (𝐼 ∈ (0..^(𝐽 + 1)) ↔ (𝐼 ∈ (0..^𝐽) ∨ 𝐼 = 𝐽))) |
| 19 | 17, 18 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐼 ∈ (0..^(𝐽 + 1)) ↔ (𝐼 ∈ (0..^𝐽) ∨ 𝐼 = 𝐽))) |
| 20 | 11, 19 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 21 | 10, 20 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1)))) |
| 22 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 23 | 3 | chnwrd 18514 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → 𝐶 ∈ Word 𝐴) |
| 25 | 5, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 27 | | pfxlen 14591 |
. . . . . . 7
⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 28 | 24, 26, 27 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 29 | 28 | oveq2d 7362 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → (0..^(♯‘(𝐶 prefix (𝐽 + 1)))) = (0..^(𝐽 + 1))) |
| 30 | 22, 29 | eleqtrrd 2834 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → 𝐼 ∈ (0..^(♯‘(𝐶 prefix (𝐽 + 1))))) |
| 31 | 21, 30 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐼 ∈ (0..^(♯‘(𝐶 prefix (𝐽 + 1))))) |
| 32 | 2, 9, 31 | chnerlem1 46990 |
. 2
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → ((𝐶 prefix (𝐽 + 1))‘𝐼) ∼ (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 33 | 23 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐶 ∈ Word 𝐴) |
| 34 | | pfxfv 14590 |
. . 3
⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 35 | 33, 8, 20, 34 | syl3anc 1373 |
. 2
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 36 | | lencl 14440 |
. . . . . . 7
⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈
ℕ0) |
| 37 | 23, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐶) ∈
ℕ0) |
| 38 | | fz0add1fz1 13635 |
. . . . . 6
⊢
(((♯‘𝐶)
∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 39 | 37, 5, 38 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 40 | 39 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 41 | | pfxfvlsw 14602 |
. . . 4
⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 42 | 33, 40, 41 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 43 | | elfzoel2 13558 |
. . . . . . 7
⊢ (𝐼 ∈ (0..^𝐽) → 𝐽 ∈ ℤ) |
| 44 | 43 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐽 ∈ ℤ) |
| 45 | 44 | zcnd 12578 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 𝐽 ∈ ℂ) |
| 46 | | 1cnd 11107 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → 1 ∈ ℂ) |
| 47 | 45, 46 | pncand 11473 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → ((𝐽 + 1) − 1) = 𝐽) |
| 48 | 47 | fveq2d 6826 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 49 | 42, 48 | eqtrd 2766 |
. 2
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 50 | 32, 35, 49 | 3brtr3d 5120 |
1
⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝐽)) → (𝐶‘𝐼) ∼ (𝐶‘𝐽)) |