| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnsubseqword | Structured version Visualization version GIF version | ||
| Description: A subsequence of a chain is a word. (Contributed by Ender Ting, 22-Jan-2026.) |
| Ref | Expression |
|---|---|
| chnsubseq.1 | ⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) |
| chnsubseq.2 | ⊢ (𝜑 → 𝐼 ∈ ( < Chain (0..^(♯‘𝑊)))) |
| Ref | Expression |
|---|---|
| chnsubseqword | ⊢ (𝜑 → (𝑊 ∘ 𝐼) ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnsubseq.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ( < Chain (0..^(♯‘𝑊)))) | |
| 2 | 1 | chnwrd 18514 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ Word (0..^(♯‘𝑊))) |
| 3 | lencl 14440 | . . . . . . 7 ⊢ (𝐼 ∈ Word (0..^(♯‘𝑊)) → (♯‘𝐼) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐼) ∈ ℕ0) |
| 5 | dfclel 2807 | . . . . . 6 ⊢ ((♯‘𝐼) ∈ ℕ0 ↔ ∃𝑥(𝑥 = (♯‘𝐼) ∧ 𝑥 ∈ ℕ0)) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∃𝑥(𝑥 = (♯‘𝐼) ∧ 𝑥 ∈ ℕ0)) |
| 7 | exancom 1862 | . . . . 5 ⊢ (∃𝑥(𝑥 = (♯‘𝐼) ∧ 𝑥 ∈ ℕ0) ↔ ∃𝑥(𝑥 ∈ ℕ0 ∧ 𝑥 = (♯‘𝐼))) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥(𝑥 ∈ ℕ0 ∧ 𝑥 = (♯‘𝐼))) |
| 9 | df-rex 3057 | . . . 4 ⊢ (∃𝑥 ∈ ℕ0 𝑥 = (♯‘𝐼) ↔ ∃𝑥(𝑥 ∈ ℕ0 ∧ 𝑥 = (♯‘𝐼))) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℕ0 𝑥 = (♯‘𝐼)) |
| 11 | chnsubseq.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) | |
| 12 | 11 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝑊 ∈ ( < Chain 𝐴)) |
| 13 | 12 | chnwrd 18514 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝑊 ∈ Word 𝐴) |
| 14 | wrdf 14425 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
| 16 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝐼 ∈ Word (0..^(♯‘𝑊))) |
| 17 | wrdf 14425 | . . . . . . . . 9 ⊢ (𝐼 ∈ Word (0..^(♯‘𝑊)) → 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) |
| 19 | 15, 18 | fcod 6676 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → (𝑊 ∘ 𝐼):(0..^(♯‘𝐼))⟶𝐴) |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → 𝑥 = (♯‘𝐼)) | |
| 21 | 20 | oveq2d 7362 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → (0..^𝑥) = (0..^(♯‘𝐼))) |
| 22 | 21 | feq2d 6635 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → ((𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴 ↔ (𝑊 ∘ 𝐼):(0..^(♯‘𝐼))⟶𝐴)) |
| 23 | 19, 22 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = (♯‘𝐼)) → (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 = (♯‘𝐼) → (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴)) |
| 25 | 24 | a1d 25 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℕ0 → (𝑥 = (♯‘𝐼) → (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴))) |
| 26 | 25 | reximdvai 3143 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ℕ0 𝑥 = (♯‘𝐼) → ∃𝑥 ∈ ℕ0 (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴)) |
| 27 | 10, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℕ0 (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴) |
| 28 | iswrd 14422 | . 2 ⊢ ((𝑊 ∘ 𝐼) ∈ Word 𝐴 ↔ ∃𝑥 ∈ ℕ0 (𝑊 ∘ 𝐼):(0..^𝑥)⟶𝐴) | |
| 29 | 27, 28 | sylibr 234 | 1 ⊢ (𝜑 → (𝑊 ∘ 𝐼) ∈ Word 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 < clt 11146 ℕ0cn0 12381 ..^cfzo 13554 ♯chash 14237 Word cword 14420 Chain cchn 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-chn 18512 |
| This theorem is referenced by: chnsubseqwl 46987 chnsubseq 46988 |
| Copyright terms: Public domain | W3C validator |