| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnsuslle | Structured version Visualization version GIF version | ||
| Description: Length of a subsequence is bounded by the length of original chain. (Contributed by Ender Ting, 30-Jan-2026.) |
| Ref | Expression |
|---|---|
| chnsubseq.1 | ⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) |
| chnsubseq.2 | ⊢ (𝜑 → 𝐼 ∈ ( < Chain (0..^(♯‘𝑊)))) |
| chnsubseq.3 | ⊢ (𝜑 → < Po 𝐴) |
| Ref | Expression |
|---|---|
| chnsuslle | ⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) ≤ (♯‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11193 | . . . . 5 ⊢ < Or ℝ | |
| 2 | sopo 5541 | . . . . 5 ⊢ ( < Or ℝ → < Po ℝ) | |
| 3 | 1, 2 | mp1i 13 | . . . 4 ⊢ (𝜑 → < Po ℝ) |
| 4 | fzossz 13579 | . . . . . . 7 ⊢ (0..^(♯‘𝑊)) ⊆ ℤ | |
| 5 | zssre 12475 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
| 6 | 4, 5 | sstri 3939 | . . . . . 6 ⊢ (0..^(♯‘𝑊)) ⊆ ℝ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝑊)) ⊆ ℝ) |
| 8 | poss 5524 | . . . . 5 ⊢ ((0..^(♯‘𝑊)) ⊆ ℝ → ( < Po ℝ → < Po (0..^(♯‘𝑊)))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ( < Po ℝ → < Po (0..^(♯‘𝑊)))) |
| 10 | 3, 9 | mpd 15 | . . 3 ⊢ (𝜑 → < Po (0..^(♯‘𝑊))) |
| 11 | chnsubseq.2 | . . 3 ⊢ (𝜑 → 𝐼 ∈ ( < Chain (0..^(♯‘𝑊)))) | |
| 12 | ovexd 7381 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝑊)) ∈ V) | |
| 13 | 10, 11, 12 | chnpolleha 18538 | . 2 ⊢ (𝜑 → (♯‘𝐼) ≤ (♯‘(0..^(♯‘𝑊)))) |
| 14 | chnsubseq.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) | |
| 15 | 14, 11 | chnsubseqwl 46987 | . 2 ⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)) |
| 16 | 14 | chnwrd 18514 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Word 𝐴) |
| 17 | lencl 14440 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 19 | hashfzo0 14337 | . . . 4 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
| 21 | 20 | eqcomd 2737 | . 2 ⊢ (𝜑 → (♯‘𝑊) = (♯‘(0..^(♯‘𝑊)))) |
| 22 | 13, 15, 21 | 3brtr4d 5121 | 1 ⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) ≤ (♯‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 Po wpo 5520 Or wor 5521 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 < clt 11146 ≤ cle 11147 ℕ0cn0 12381 ℤcz 12468 ..^cfzo 13554 ♯chash 14237 Word cword 14420 Chain cchn 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-chn 18512 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |