Proof of Theorem chnsubseqwl
| Step | Hyp | Ref
| Expression |
| 1 | | chnsubseq.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ ( < Chain
(0..^(♯‘𝑊)))) |
| 2 | 1 | chnwrd 18514 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ Word (0..^(♯‘𝑊))) |
| 3 | | wrdf 14425 |
. . . . . . 7
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) |
| 5 | 4 | frnd 6659 |
. . . . 5
⊢ (𝜑 → ran 𝐼 ⊆ (0..^(♯‘𝑊))) |
| 6 | | chnsubseq.1 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) |
| 7 | 6 | chnwrd 18514 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Word 𝐴) |
| 8 | | wrddm 14428 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝐴 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 10 | 5, 9 | sseqtrrd 3967 |
. . . 4
⊢ (𝜑 → ran 𝐼 ⊆ dom 𝑊) |
| 11 | | dmcosseq 5916 |
. . . 4
⊢ (ran
𝐼 ⊆ dom 𝑊 → dom (𝑊 ∘ 𝐼) = dom 𝐼) |
| 12 | 10, 11 | syl 17 |
. . 3
⊢ (𝜑 → dom (𝑊 ∘ 𝐼) = dom 𝐼) |
| 13 | 6, 1 | chnsubseqword 46986 |
. . . 4
⊢ (𝜑 → (𝑊 ∘ 𝐼) ∈ Word 𝐴) |
| 14 | | wrddm 14428 |
. . . 4
⊢ ((𝑊 ∘ 𝐼) ∈ Word 𝐴 → dom (𝑊 ∘ 𝐼) = (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 15 | 13, 14 | syl 17 |
. . 3
⊢ (𝜑 → dom (𝑊 ∘ 𝐼) = (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 16 | | wrddm 14428 |
. . . 4
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ dom 𝐼 =
(0..^(♯‘𝐼))) |
| 17 | 2, 16 | syl 17 |
. . 3
⊢ (𝜑 → dom 𝐼 = (0..^(♯‘𝐼))) |
| 18 | 12, 15, 17 | 3eqtr3d 2774 |
. 2
⊢ (𝜑 → (0..^(♯‘(𝑊 ∘ 𝐼))) = (0..^(♯‘𝐼))) |
| 19 | | 0z 12479 |
. . . . 5
⊢ 0 ∈
ℤ |
| 20 | | lencl 14440 |
. . . . . . 7
⊢ ((𝑊 ∘ 𝐼) ∈ Word 𝐴 → (♯‘(𝑊 ∘ 𝐼)) ∈
ℕ0) |
| 21 | 13, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) ∈
ℕ0) |
| 22 | 21 | nn0zd 12494 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) ∈ ℤ) |
| 23 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(♯‘(𝑊 ∘
𝐼))) → 0 <
(♯‘(𝑊 ∘
𝐼))) |
| 24 | | fzoopth 13662 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (♯‘(𝑊 ∘ 𝐼)) ∈ ℤ ∧ 0 <
(♯‘(𝑊 ∘
𝐼))) →
((0..^(♯‘(𝑊
∘ 𝐼))) =
(0..^(♯‘𝐼))
↔ (0 = 0 ∧ (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)))) |
| 25 | 19, 22, 23, 24 | mp3an2ani 1470 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(♯‘(𝑊 ∘
𝐼))) →
((0..^(♯‘(𝑊
∘ 𝐼))) =
(0..^(♯‘𝐼))
↔ (0 = 0 ∧ (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)))) |
| 26 | | eqid 2731 |
. . . . 5
⊢ 0 =
0 |
| 27 | 26 | biantrur 530 |
. . . 4
⊢
((♯‘(𝑊
∘ 𝐼)) =
(♯‘𝐼) ↔ (0
= 0 ∧ (♯‘(𝑊
∘ 𝐼)) =
(♯‘𝐼))) |
| 28 | 25, 27 | bitr4di 289 |
. . 3
⊢ ((𝜑 ∧ 0 <
(♯‘(𝑊 ∘
𝐼))) →
((0..^(♯‘(𝑊
∘ 𝐼))) =
(0..^(♯‘𝐼))
↔ (♯‘(𝑊
∘ 𝐼)) =
(♯‘𝐼))) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → 0 = (♯‘(𝑊 ∘ 𝐼))) |
| 30 | 29 | oveq2d 7362 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → (0..^0) =
(0..^(♯‘(𝑊
∘ 𝐼)))) |
| 31 | | fzo0 13583 |
. . . . . . 7
⊢ (0..^0) =
∅ |
| 32 | 30, 31 | eqtr3di 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → (0..^(♯‘(𝑊 ∘ 𝐼))) = ∅) |
| 33 | 32 | eqeq1d 2733 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((0..^(♯‘(𝑊 ∘ 𝐼))) = (0..^(♯‘𝐼)) ↔ ∅ =
(0..^(♯‘𝐼)))) |
| 34 | | eqcom 2738 |
. . . . 5
⊢ (∅
= (0..^(♯‘𝐼))
↔ (0..^(♯‘𝐼)) = ∅) |
| 35 | 33, 34 | bitrdi 287 |
. . . 4
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((0..^(♯‘(𝑊 ∘ 𝐼))) = (0..^(♯‘𝐼)) ↔ (0..^(♯‘𝐼)) = ∅)) |
| 36 | | 0zd 12480 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → 0 ∈
ℤ) |
| 37 | | lencl 14440 |
. . . . . . . 8
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ (♯‘𝐼)
∈ ℕ0) |
| 38 | 2, 37 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 39 | 38 | nn0zd 12494 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐼) ∈
ℤ) |
| 40 | 39 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → (♯‘𝐼) ∈ ℤ) |
| 41 | | fzon 13580 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (♯‘𝐼) ∈ ℤ) →
((♯‘𝐼) ≤ 0
↔ (0..^(♯‘𝐼)) = ∅)) |
| 42 | 36, 40, 41 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((♯‘𝐼) ≤ 0 ↔ (0..^(♯‘𝐼)) = ∅)) |
| 43 | | nn0le0eq0 12409 |
. . . . . . . . 9
⊢
((♯‘𝐼)
∈ ℕ0 → ((♯‘𝐼) ≤ 0 ↔ (♯‘𝐼) = 0)) |
| 44 | 43 | biimpa 476 |
. . . . . . . 8
⊢
(((♯‘𝐼)
∈ ℕ0 ∧ (♯‘𝐼) ≤ 0) → (♯‘𝐼) = 0) |
| 45 | 38, 44 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝐼) ≤ 0) →
(♯‘𝐼) =
0) |
| 46 | 45 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) ∧ (♯‘𝐼) ≤ 0) → (♯‘𝐼) = 0) |
| 47 | | id 22 |
. . . . . . . 8
⊢
((♯‘𝐼) =
0 → (♯‘𝐼)
= 0) |
| 48 | | 0le0 12226 |
. . . . . . . 8
⊢ 0 ≤
0 |
| 49 | 47, 48 | eqbrtrdi 5128 |
. . . . . . 7
⊢
((♯‘𝐼) =
0 → (♯‘𝐼)
≤ 0) |
| 50 | 49 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) ∧ (♯‘𝐼) = 0) → (♯‘𝐼) ≤ 0) |
| 51 | 46, 50 | impbida 800 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((♯‘𝐼) ≤ 0 ↔ (♯‘𝐼) = 0)) |
| 52 | | eqcom 2738 |
. . . . . 6
⊢
((♯‘𝐼) =
0 ↔ 0 = (♯‘𝐼)) |
| 53 | 52 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((♯‘𝐼) = 0 ↔ 0 = (♯‘𝐼))) |
| 54 | 29 | eqeq1d 2733 |
. . . . 5
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → (0 = (♯‘𝐼) ↔ (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼))) |
| 55 | 51, 53, 54 | 3bitrd 305 |
. . . 4
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((♯‘𝐼) ≤ 0 ↔ (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼))) |
| 56 | 35, 42, 55 | 3bitr2d 307 |
. . 3
⊢ ((𝜑 ∧ 0 = (♯‘(𝑊 ∘ 𝐼))) → ((0..^(♯‘(𝑊 ∘ 𝐼))) = (0..^(♯‘𝐼)) ↔ (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼))) |
| 57 | 21 | nn0ge0d 12445 |
. . . 4
⊢ (𝜑 → 0 ≤
(♯‘(𝑊 ∘
𝐼))) |
| 58 | | 0red 11115 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
| 59 | 21 | nn0red 12443 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) ∈ ℝ) |
| 60 | 58, 59 | leloed 11256 |
. . . 4
⊢ (𝜑 → (0 ≤
(♯‘(𝑊 ∘
𝐼)) ↔ (0 <
(♯‘(𝑊 ∘
𝐼)) ∨ 0 =
(♯‘(𝑊 ∘
𝐼))))) |
| 61 | 57, 60 | mpbid 232 |
. . 3
⊢ (𝜑 → (0 <
(♯‘(𝑊 ∘
𝐼)) ∨ 0 =
(♯‘(𝑊 ∘
𝐼)))) |
| 62 | 28, 56, 61 | mpjaodan 960 |
. 2
⊢ (𝜑 →
((0..^(♯‘(𝑊
∘ 𝐼))) =
(0..^(♯‘𝐼))
↔ (♯‘(𝑊
∘ 𝐼)) =
(♯‘𝐼))) |
| 63 | 18, 62 | mpbid 232 |
1
⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)) |