| Step | Hyp | Ref
| Expression |
| 1 | | chnccat.1 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ ( < Chain 𝐴)) |
| 2 | 1 | chnwrd 18506 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Word 𝐴) |
| 3 | | chnccat.2 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ ( < Chain 𝐴)) |
| 4 | 3 | chnwrd 18506 |
. . 3
⊢ (𝜑 → 𝑈 ∈ Word 𝐴) |
| 5 | | ccatcl 14473 |
. . 3
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴) → (𝑇 ++ 𝑈) ∈ Word 𝐴) |
| 6 | 2, 4, 5 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑇 ++ 𝑈) ∈ Word 𝐴) |
| 7 | | eqidd 2731 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑇) = (♯‘𝑇)) |
| 8 | 7, 2 | wrdfd 14418 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(0..^(♯‘𝑇))⟶𝐴) |
| 9 | 8 | fdmd 6657 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑇 = (0..^(♯‘𝑇))) |
| 10 | 9 | difeq1d 4073 |
. . . . . . . . 9
⊢ (𝜑 → (dom 𝑇 ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) =
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 11 | 10 | eleq2d 2815 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ (dom 𝑇 ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ↔ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 12 | 11 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈ (dom 𝑇 ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 13 | | snsspr1 4764 |
. . . . . . . . . 10
⊢ {0}
⊆ {0, ((♯‘𝑇) + (♯‘𝑈))} |
| 14 | | sscon 4091 |
. . . . . . . . . 10
⊢ ({0}
⊆ {0, ((♯‘𝑇) + (♯‘𝑈))} → (dom 𝑇 ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ⊆ (dom 𝑇 ∖ {0})) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢ (dom
𝑇 ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})
⊆ (dom 𝑇 ∖
{0}) |
| 16 | 15 | sseli 3928 |
. . . . . . . 8
⊢ (𝑛 ∈ (dom 𝑇 ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) → 𝑛 ∈ (dom 𝑇 ∖ {0})) |
| 17 | | ischn 18505 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ ( < Chain 𝐴) ↔ (𝑇 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛))) |
| 18 | 1, 17 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛))) |
| 19 | 18 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 20 | 19 | r19.21bi 3222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (dom 𝑇 ∖ {0})) → (𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 21 | 16, 20 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (dom 𝑇 ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 22 | 12, 21 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 23 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑇 ∈ Word 𝐴) |
| 24 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑈 ∈ Word 𝐴) |
| 25 | | sscon 4091 |
. . . . . . . . . . 11
⊢ ({0}
⊆ {0, ((♯‘𝑇) + (♯‘𝑈))} → ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})
⊆ ((0..^(♯‘𝑇)) ∖ {0})) |
| 26 | 13, 25 | ax-mp 5 |
. . . . . . . . . 10
⊢
((0..^(♯‘𝑇)) ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ⊆
((0..^(♯‘𝑇))
∖ {0}) |
| 27 | 26 | sseli 3928 |
. . . . . . . . 9
⊢ (𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) → 𝑛 ∈ ((0..^(♯‘𝑇)) ∖
{0})) |
| 28 | 27 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
((0..^(♯‘𝑇))
∖ {0})) |
| 29 | | lencl 14432 |
. . . . . . . . . 10
⊢ (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈
ℕ0) |
| 30 | 2, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑇) ∈
ℕ0) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (♯‘𝑇)
∈ ℕ0) |
| 32 | 28, 31 | elfzodif0 13662 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 − 1) ∈
(0..^(♯‘𝑇))) |
| 33 | | ccatval1 14476 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ (𝑛 − 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 34 | 23, 24, 32, 33 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 35 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 36 | 35 | eldifad 3912 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
(0..^(♯‘𝑇))) |
| 37 | | ccatval1 14476 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 𝑛 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 𝑈)‘𝑛) = (𝑇‘𝑛)) |
| 38 | 23, 24, 36, 37 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘𝑛) = (𝑇‘𝑛)) |
| 39 | 22, 34, 38 | 3brtr4d 5121 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 40 | 39 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 41 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 42 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 43 | | noel 4286 |
. . . . . . . 8
⊢ ¬
𝑛 ∈
∅ |
| 44 | | fveq2 6817 |
. . . . . . . . . . . . . 14
⊢ (𝑇 = ∅ →
(♯‘𝑇) =
(♯‘∅)) |
| 45 | | hash0 14266 |
. . . . . . . . . . . . . 14
⊢
(♯‘∅) = 0 |
| 46 | 44, 45 | eqtrdi 2781 |
. . . . . . . . . . . . 13
⊢ (𝑇 = ∅ →
(♯‘𝑇) =
0) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → (♯‘𝑇) = 0) |
| 48 | 47 | sneqd 4586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → {(♯‘𝑇)} = {0}) |
| 49 | 48 | difeq1d 4073 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) = ({0}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 50 | | difpr 4753 |
. . . . . . . . . . 11
⊢ ({0}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) = (({0} ∖ {0}) ∖
{((♯‘𝑇) +
(♯‘𝑈))}) |
| 51 | | difid 4324 |
. . . . . . . . . . . 12
⊢ ({0}
∖ {0}) = ∅ |
| 52 | 51 | difeq1i 4070 |
. . . . . . . . . . 11
⊢ (({0}
∖ {0}) ∖ {((♯‘𝑇) + (♯‘𝑈))}) = (∅ ∖
{((♯‘𝑇) +
(♯‘𝑈))}) |
| 53 | | 0dif 4353 |
. . . . . . . . . . 11
⊢ (∅
∖ {((♯‘𝑇)
+ (♯‘𝑈))}) =
∅ |
| 54 | 50, 52, 53 | 3eqtri 2757 |
. . . . . . . . . 10
⊢ ({0}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) = ∅ |
| 55 | 49, 54 | eqtrdi 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) =
∅) |
| 56 | 55 | eleq2d 2815 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ↔ 𝑛 ∈ ∅)) |
| 57 | 43, 56 | mtbiri 327 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → ¬ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 58 | 42, 57 | pm2.21dd 195 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑇 = ∅) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 59 | | eldifi 4079 |
. . . . . . . . 9
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
𝑛 ∈
{(♯‘𝑇)}) |
| 60 | 59 | elsnd 4592 |
. . . . . . . 8
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
𝑛 = (♯‘𝑇)) |
| 61 | 60 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → 𝑛 = (♯‘𝑇)) |
| 62 | | vex 3438 |
. . . . . . . . 9
⊢ 𝑛 ∈ V |
| 63 | 62 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → 𝑛 ∈ V) |
| 64 | | eldifn 4080 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}) |
| 65 | 64 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ¬ 𝑛 ∈ {0, ((♯‘𝑇) + (♯‘𝑈))}) |
| 66 | | fveq2 6817 |
. . . . . . . . . . . . . 14
⊢ (𝑈 = ∅ →
(♯‘𝑈) =
(♯‘∅)) |
| 67 | 66, 45 | eqtrdi 2781 |
. . . . . . . . . . . . 13
⊢ (𝑈 = ∅ →
(♯‘𝑈) =
0) |
| 68 | 67 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → (♯‘𝑈) = 0) |
| 69 | 68 | oveq2d 7357 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ((♯‘𝑇) + (♯‘𝑈)) = ((♯‘𝑇) + 0)) |
| 70 | | nn0cn 12383 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑇)
∈ ℕ0 → (♯‘𝑇) ∈ ℂ) |
| 71 | 2, 29, 70 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑇) ∈
ℂ) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑇) ∈
ℂ) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → (♯‘𝑇) ∈
ℂ) |
| 74 | 73 | addridd 11305 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ((♯‘𝑇) + 0) = (♯‘𝑇)) |
| 75 | 69, 74 | eqtrd 2765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ((♯‘𝑇) + (♯‘𝑈)) = (♯‘𝑇)) |
| 76 | 75 | preq2d 4691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → {0, ((♯‘𝑇) + (♯‘𝑈))} = {0, (♯‘𝑇)}) |
| 77 | 65, 76 | neleqtrd 2851 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ¬ 𝑛 ∈ {0, (♯‘𝑇)}) |
| 78 | 63, 77 | nelpr2 4604 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → 𝑛 ≠ (♯‘𝑇)) |
| 79 | 61, 78 | pm2.21ddne 3010 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ 𝑈 = ∅) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 80 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → (lastS‘𝑇) < (𝑈‘0)) |
| 81 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → 𝑇 ∈ Word 𝐴) |
| 82 | 81 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → 𝑇 ∈ Word 𝐴) |
| 83 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → 𝑈 ∈ Word 𝐴) |
| 84 | 83 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → 𝑈 ∈ Word 𝐴) |
| 85 | 41 | eldifad 3912 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → 𝑛 ∈ {(♯‘𝑇)}) |
| 86 | 85 | elsnd 4592 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → 𝑛 = (♯‘𝑇)) |
| 87 | 86 | oveq1d 7356 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑛 − 1) = ((♯‘𝑇) − 1)) |
| 88 | 81, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑇) ∈
ℕ0) |
| 89 | | sscon 4091 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({0}
⊆ {0, ((♯‘𝑇) + (♯‘𝑈))} → ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})
⊆ ({(♯‘𝑇)} ∖ {0})) |
| 90 | 13, 89 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ⊆ ({(♯‘𝑇)} ∖ {0}) |
| 91 | 90 | sseli 3928 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
𝑛 ∈
({(♯‘𝑇)}
∖ {0})) |
| 92 | 60, 91 | eqeltrrd 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
(♯‘𝑇) ∈
({(♯‘𝑇)}
∖ {0})) |
| 93 | 92 | eldifbd 3913 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
¬ (♯‘𝑇)
∈ {0}) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → ¬
(♯‘𝑇) ∈
{0}) |
| 95 | 88, 94 | eldifd 3911 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑇) ∈
(ℕ0 ∖ {0})) |
| 96 | | dfn2 12386 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 97 | 95, 96 | eleqtrrdi 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑇) ∈
ℕ) |
| 98 | | fzo0end 13650 |
. . . . . . . . . . . 12
⊢
((♯‘𝑇)
∈ ℕ → ((♯‘𝑇) − 1) ∈
(0..^(♯‘𝑇))) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
((♯‘𝑇) −
1) ∈ (0..^(♯‘𝑇))) |
| 100 | 87, 99 | eqeltrd 2829 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑛 − 1) ∈ (0..^(♯‘𝑇))) |
| 101 | 100 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → (𝑛 − 1) ∈ (0..^(♯‘𝑇))) |
| 102 | 82, 84, 101, 33 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 103 | 60 | oveq1d 7356 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) →
(𝑛 − 1) =
((♯‘𝑇) −
1)) |
| 104 | 103 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑛 − 1) = ((♯‘𝑇) − 1)) |
| 105 | 104 | fveq2d 6821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑇‘(𝑛 − 1)) = (𝑇‘((♯‘𝑇) − 1))) |
| 106 | | lsw 14463 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ Word 𝐴 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
| 107 | 81, 106 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
| 108 | 105, 107 | eqtr4d 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑇‘(𝑛 − 1)) = (lastS‘𝑇)) |
| 109 | 108 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → (𝑇‘(𝑛 − 1)) = (lastS‘𝑇)) |
| 110 | 102, 109 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (lastS‘𝑇)) |
| 111 | 86 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → 𝑛 = (♯‘𝑇)) |
| 112 | 111 | fveq2d 6821 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘𝑛) = ((𝑇 ++ 𝑈)‘(♯‘𝑇))) |
| 113 | | lencl 14432 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ Word 𝐴 → (♯‘𝑈) ∈
ℕ0) |
| 114 | 4, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑈) ∈
ℕ0) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑈) ∈
ℕ0) |
| 116 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (♯‘𝑈) = 0) → 𝑇 ∈ Word 𝐴) |
| 117 | 116, 29, 70 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (♯‘𝑈) = 0) →
(♯‘𝑇) ∈
ℂ) |
| 118 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (♯‘𝑈) = 0) →
(♯‘𝑈) =
0) |
| 119 | 117, 118 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (♯‘𝑈) = 0) →
((♯‘𝑇) ∈
ℂ ∧ (♯‘𝑈) = 0)) |
| 120 | | prid2g 4712 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑇)
∈ ℂ → (♯‘𝑇) ∈ {0, (♯‘𝑇)}) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → (♯‘𝑇) ∈ {0,
(♯‘𝑇)}) |
| 122 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → (♯‘𝑈) = 0) |
| 123 | 122 | oveq2d 7357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → ((♯‘𝑇) + (♯‘𝑈)) = ((♯‘𝑇) + 0)) |
| 124 | | addrid 11285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑇)
∈ ℂ → ((♯‘𝑇) + 0) = (♯‘𝑇)) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → ((♯‘𝑇) + 0) = (♯‘𝑇)) |
| 126 | 123, 125 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → ((♯‘𝑇) + (♯‘𝑈)) = (♯‘𝑇)) |
| 127 | 126 | preq2d 4691 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → {0, ((♯‘𝑇) + (♯‘𝑈))} = {0, (♯‘𝑇)}) |
| 128 | 121, 127 | eleqtrrd 2832 |
. . . . . . . . . . . . . . . . . 18
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → (♯‘𝑇) ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}) |
| 129 | 128 | snssd 4759 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → {(♯‘𝑇)} ⊆ {0,
((♯‘𝑇) +
(♯‘𝑈))}) |
| 130 | | ssdif0 4314 |
. . . . . . . . . . . . . . . . 17
⊢
({(♯‘𝑇)}
⊆ {0, ((♯‘𝑇) + (♯‘𝑈))} ↔ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) =
∅) |
| 131 | 129, 130 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑇)
∈ ℂ ∧ (♯‘𝑈) = 0) → ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) =
∅) |
| 132 | | nel02 4287 |
. . . . . . . . . . . . . . . 16
⊢
(({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) = ∅ → ¬
𝑛 ∈
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 133 | 119, 131,
132 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (♯‘𝑈) = 0) → ¬ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 134 | 133 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
((♯‘𝑈) = 0
→ ¬ 𝑛 ∈
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}))) |
| 135 | 41, 134 | mt2d 136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → ¬
(♯‘𝑈) =
0) |
| 136 | 135 | neqned 2933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑈) ≠
0) |
| 137 | | elnnne0 12387 |
. . . . . . . . . . . 12
⊢
((♯‘𝑈)
∈ ℕ ↔ ((♯‘𝑈) ∈ ℕ0 ∧
(♯‘𝑈) ≠
0)) |
| 138 | 115, 136,
137 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) →
(♯‘𝑈) ∈
ℕ) |
| 139 | 138 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → (♯‘𝑈) ∈
ℕ) |
| 140 | | lbfzo0 13591 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^(♯‘𝑈))
↔ (♯‘𝑈)
∈ ℕ) |
| 141 | 139, 140 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → 0 ∈
(0..^(♯‘𝑈))) |
| 142 | | addlid 11288 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑇)
∈ ℂ → (0 + (♯‘𝑇)) = (♯‘𝑇)) |
| 143 | 142 | eqcomd 2736 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑇)
∈ ℂ → (♯‘𝑇) = (0 + (♯‘𝑇))) |
| 144 | 143 | fveq2d 6821 |
. . . . . . . . . . . 12
⊢
((♯‘𝑇)
∈ ℂ → ((𝑇
++ 𝑈)‘(♯‘𝑇)) = ((𝑇 ++ 𝑈)‘(0 + (♯‘𝑇)))) |
| 145 | 29, 70, 144 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ Word 𝐴 → ((𝑇 ++ 𝑈)‘(♯‘𝑇)) = ((𝑇 ++ 𝑈)‘(0 + (♯‘𝑇)))) |
| 146 | 145 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ (0..^(♯‘𝑈))) → ((𝑇 ++ 𝑈)‘(♯‘𝑇)) = ((𝑇 ++ 𝑈)‘(0 + (♯‘𝑇)))) |
| 147 | | ccatval3 14478 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ (0..^(♯‘𝑈))) → ((𝑇 ++ 𝑈)‘(0 + (♯‘𝑇))) = (𝑈‘0)) |
| 148 | 146, 147 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ (0..^(♯‘𝑈))) → ((𝑇 ++ 𝑈)‘(♯‘𝑇)) = (𝑈‘0)) |
| 149 | 82, 84, 141, 148 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘(♯‘𝑇)) = (𝑈‘0)) |
| 150 | 112, 149 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘𝑛) = (𝑈‘0)) |
| 151 | 80, 110, 150 | 3brtr4d 5121 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) ∧ (lastS‘𝑇) < (𝑈‘0)) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 152 | | chnccat.3 |
. . . . . . 7
⊢ (𝜑 → (𝑇 = ∅ ∨ 𝑈 = ∅ ∨ (lastS‘𝑇) < (𝑈‘0))) |
| 153 | 152 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → (𝑇 = ∅ ∨ 𝑈 = ∅ ∨ (lastS‘𝑇) < (𝑈‘0))) |
| 154 | 58, 79, 151, 153 | mpjao3dan 1434 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 155 | 154 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 156 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 157 | | eldifi 4079 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)})
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) → 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) |
| 158 | 157 | eldifad 3912 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)})
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) → 𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 159 | | elfzoelz 13551 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) → 𝑛 ∈ ℤ) |
| 160 | 158, 159 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)})
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) → 𝑛 ∈ ℤ) |
| 161 | | zcn 12465 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
| 162 | 156, 160,
161 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
ℂ) |
| 163 | | 1cnd 11099 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 1 ∈ ℂ) |
| 164 | 71 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (♯‘𝑇)
∈ ℂ) |
| 165 | 162, 163,
164 | sub32d 11496 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑛 − 1)
− (♯‘𝑇))
= ((𝑛 −
(♯‘𝑇)) −
1)) |
| 166 | 165 | fveq2d 6821 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑈‘((𝑛 − 1) −
(♯‘𝑇))) =
(𝑈‘((𝑛 − (♯‘𝑇)) − 1))) |
| 167 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑈 ∈ ( < Chain
𝐴)) |
| 168 | 158 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 169 | | nn0z 12485 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑈)
∈ ℕ0 → (♯‘𝑈) ∈ ℤ) |
| 170 | 4, 113, 169 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑈) ∈
ℤ) |
| 171 | 170 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (♯‘𝑈)
∈ ℤ) |
| 172 | | fzosubel3 13618 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∧ (♯‘𝑈) ∈ ℤ) → (𝑛 − (♯‘𝑇)) ∈
(0..^(♯‘𝑈))) |
| 173 | 168, 171,
172 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 −
(♯‘𝑇)) ∈
(0..^(♯‘𝑈))) |
| 174 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝜑) |
| 175 | 156 | eldifad 3912 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑛 ∈
(((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) |
| 176 | 174, 175 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}))) |
| 177 | | eldifi 4079 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 178 | 177, 159,
161 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
𝑛 ∈
ℂ) |
| 179 | 178 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → 𝑛 ∈ ℂ) |
| 180 | 71 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (♯‘𝑇) ∈
ℂ) |
| 181 | | eldifsni 4740 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
𝑛 ≠ (♯‘𝑇)) |
| 182 | 181 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → 𝑛 ≠ (♯‘𝑇)) |
| 183 | 179, 180,
182 | subne0d 11473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − (♯‘𝑇)) ≠ 0) |
| 184 | | nelsn 4617 |
. . . . . . . . . . 11
⊢ ((𝑛 − (♯‘𝑇)) ≠ 0 → ¬ (𝑛 − (♯‘𝑇)) ∈ {0}) |
| 185 | 176, 183,
184 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ¬ (𝑛 −
(♯‘𝑇)) ∈
{0}) |
| 186 | 173, 185 | eldifd 3911 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 −
(♯‘𝑇)) ∈
((0..^(♯‘𝑈))
∖ {0})) |
| 187 | | eqidd 2731 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑈) = (♯‘𝑈)) |
| 188 | 187, 4 | wrdfd 14418 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈:(0..^(♯‘𝑈))⟶𝐴) |
| 189 | 188 | fdmd 6657 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑈 = (0..^(♯‘𝑈))) |
| 190 | 189 | difeq1d 4073 |
. . . . . . . . . . 11
⊢ (𝜑 → (dom 𝑈 ∖ {0}) = ((0..^(♯‘𝑈)) ∖
{0})) |
| 191 | 190 | eleq2d 2815 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 − (♯‘𝑇)) ∈ (dom 𝑈 ∖ {0}) ↔ (𝑛 − (♯‘𝑇)) ∈ ((0..^(♯‘𝑈)) ∖
{0}))) |
| 192 | 191 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 − (♯‘𝑇)) ∈ ((0..^(♯‘𝑈)) ∖ {0})) → (𝑛 − (♯‘𝑇)) ∈ (dom 𝑈 ∖ {0})) |
| 193 | 186, 192 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 −
(♯‘𝑇)) ∈
(dom 𝑈 ∖
{0})) |
| 194 | 167, 193 | chnltm1 18507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑈‘((𝑛 − (♯‘𝑇)) − 1)) < (𝑈‘(𝑛 − (♯‘𝑇)))) |
| 195 | 166, 194 | eqbrtrd 5111 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑈‘((𝑛 − 1) −
(♯‘𝑇))) < (𝑈‘(𝑛 − (♯‘𝑇)))) |
| 196 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑇 ∈ Word 𝐴) |
| 197 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ 𝑈 ∈ Word 𝐴) |
| 198 | 177, 159 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
𝑛 ∈
ℤ) |
| 199 | 198 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → 𝑛 ∈ ℤ) |
| 200 | | nn0z 12485 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑇)
∈ ℕ0 → (♯‘𝑇) ∈ ℤ) |
| 201 | 2, 29, 200 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑇) ∈
ℤ) |
| 202 | 201 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (♯‘𝑇) ∈
ℤ) |
| 203 | 199, 202 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 ∈ ℤ ∧ (♯‘𝑇) ∈
ℤ)) |
| 204 | | elfzole1 13559 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) → (♯‘𝑇) ≤ 𝑛) |
| 205 | 177, 204 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
(♯‘𝑇) ≤
𝑛) |
| 206 | 205 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (♯‘𝑇) ≤ 𝑛) |
| 207 | | eldifn 4080 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
¬ 𝑛 ∈
{(♯‘𝑇)}) |
| 208 | | velsn 4590 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ {(♯‘𝑇)} ↔ 𝑛 = (♯‘𝑇)) |
| 209 | 208 | biimpri 228 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (♯‘𝑇) → 𝑛 ∈ {(♯‘𝑇)}) |
| 210 | 209 | necon3bi 2952 |
. . . . . . . . . . . . 13
⊢ (¬
𝑛 ∈
{(♯‘𝑇)} →
𝑛 ≠ (♯‘𝑇)) |
| 211 | 210 | necomd 2981 |
. . . . . . . . . . . 12
⊢ (¬
𝑛 ∈
{(♯‘𝑇)} →
(♯‘𝑇) ≠
𝑛) |
| 212 | 207, 211 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
(♯‘𝑇) ≠
𝑛) |
| 213 | 212 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (♯‘𝑇) ≠ 𝑛) |
| 214 | | simp1r 1199 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) ∈ ℤ) |
| 215 | 214 | zred 12569 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) ∈ ℝ) |
| 216 | | simp1l 1198 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → 𝑛 ∈ ℤ) |
| 217 | 216 | zred 12569 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → 𝑛 ∈ ℝ) |
| 218 | | simp2 1137 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) ≤ 𝑛) |
| 219 | | simp3 1138 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) ≠ 𝑛) |
| 220 | 219 | necomd 2981 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → 𝑛 ≠ (♯‘𝑇)) |
| 221 | 215, 217,
218, 220 | leneltd 11259 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) < 𝑛) |
| 222 | | simp1 1136 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (𝑛 ∈ ℤ ∧ (♯‘𝑇) ∈
ℤ)) |
| 223 | 222 | ancomd 461 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → ((♯‘𝑇) ∈ ℤ ∧ 𝑛 ∈ ℤ)) |
| 224 | | zltp1le 12514 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑇)
∈ ℤ ∧ 𝑛
∈ ℤ) → ((♯‘𝑇) < 𝑛 ↔ ((♯‘𝑇) + 1) ≤ 𝑛)) |
| 225 | 223, 224 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → ((♯‘𝑇) < 𝑛 ↔ ((♯‘𝑇) + 1) ≤ 𝑛)) |
| 226 | 221, 225 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → ((♯‘𝑇) + 1) ≤ 𝑛) |
| 227 | | peano2re 11278 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑇)
∈ ℝ → ((♯‘𝑇) + 1) ∈ ℝ) |
| 228 | 215, 227 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → ((♯‘𝑇) + 1) ∈ ℝ) |
| 229 | | 1red 11105 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → 1 ∈ ℝ) |
| 230 | 228, 217,
229 | lesub1d 11716 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (((♯‘𝑇) + 1) ≤ 𝑛 ↔ (((♯‘𝑇) + 1) − 1) ≤ (𝑛 − 1))) |
| 231 | | zcn 12465 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑇)
∈ ℤ → (♯‘𝑇) ∈ ℂ) |
| 232 | | 1cnd 11099 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑇)
∈ ℤ → 1 ∈ ℂ) |
| 233 | 231, 232 | pncand 11465 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑇)
∈ ℤ → (((♯‘𝑇) + 1) − 1) = (♯‘𝑇)) |
| 234 | 233 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) → (((♯‘𝑇) + 1) − 1) = (♯‘𝑇)) |
| 235 | 234 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (((♯‘𝑇) + 1) − 1) = (♯‘𝑇)) |
| 236 | 235 | breq1d 5099 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → ((((♯‘𝑇) + 1) − 1) ≤ (𝑛 − 1) ↔ (♯‘𝑇) ≤ (𝑛 − 1))) |
| 237 | 230, 236 | bitrd 279 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (((♯‘𝑇) + 1) ≤ 𝑛 ↔ (♯‘𝑇) ≤ (𝑛 − 1))) |
| 238 | 226, 237 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ) ∧ (♯‘𝑇) ≤ 𝑛 ∧ (♯‘𝑇) ≠ 𝑛) → (♯‘𝑇) ≤ (𝑛 − 1)) |
| 239 | 203, 206,
213, 238 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (♯‘𝑇) ≤ (𝑛 − 1)) |
| 240 | 199 | zred 12569 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → 𝑛 ∈ ℝ) |
| 241 | | peano2rem 11420 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
| 242 | 240, 241 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − 1) ∈ ℝ) |
| 243 | 201, 170 | zaddcld 12573 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑇) + (♯‘𝑈)) ∈
ℤ) |
| 244 | 243 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) →
((♯‘𝑇) +
(♯‘𝑈)) ∈
ℤ) |
| 245 | 244 | zred 12569 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) →
((♯‘𝑇) +
(♯‘𝑈)) ∈
ℝ) |
| 246 | 240 | ltm1d 12046 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − 1) < 𝑛) |
| 247 | | elfzolt2 13560 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) → 𝑛 < ((♯‘𝑇) + (♯‘𝑈))) |
| 248 | 177, 247 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) →
𝑛 <
((♯‘𝑇) +
(♯‘𝑈))) |
| 249 | 248 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → 𝑛 < ((♯‘𝑇) + (♯‘𝑈))) |
| 250 | 242, 240,
245, 246, 249 | lttrd 11266 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − 1) < ((♯‘𝑇) + (♯‘𝑈))) |
| 251 | | peano2zm 12507 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (𝑛 − 1) ∈
ℤ) |
| 252 | 199, 251 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − 1) ∈ ℤ) |
| 253 | | elfzo 13553 |
. . . . . . . . . 10
⊢ (((𝑛 − 1) ∈ ℤ ∧
(♯‘𝑇) ∈
ℤ ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈ ℤ) → ((𝑛 − 1) ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ↔ ((♯‘𝑇) ≤ (𝑛 − 1) ∧ (𝑛 − 1) < ((♯‘𝑇) + (♯‘𝑈))))) |
| 254 | 252, 202,
244, 253 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → ((𝑛 − 1) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ↔ ((♯‘𝑇) ≤ (𝑛 − 1) ∧ (𝑛 − 1) < ((♯‘𝑇) + (♯‘𝑈))))) |
| 255 | 239, 250,
254 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)})) → (𝑛 − 1) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 256 | 157, 255 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 − 1) ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 257 | | ccatval2 14477 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ (𝑛 − 1) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (𝑈‘((𝑛 − 1) − (♯‘𝑇)))) |
| 258 | 196, 197,
256, 257 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) = (𝑈‘((𝑛 − 1) − (♯‘𝑇)))) |
| 259 | | ccatval2 14477 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → ((𝑇 ++ 𝑈)‘𝑛) = (𝑈‘(𝑛 − (♯‘𝑇)))) |
| 260 | 196, 197,
168, 259 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘𝑛) = (𝑈‘(𝑛 − (♯‘𝑇)))) |
| 261 | 195, 258,
260 | 3brtr4d 5121 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 262 | 261 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) ∧ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 263 | | ccatlen 14474 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴) → (♯‘(𝑇 ++ 𝑈)) = ((♯‘𝑇) + (♯‘𝑈))) |
| 264 | 2, 4, 263 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝑇 ++ 𝑈)) = ((♯‘𝑇) + (♯‘𝑈))) |
| 265 | 264 | eqcomd 2736 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑇) + (♯‘𝑈)) = (♯‘(𝑇 ++ 𝑈))) |
| 266 | 265, 6 | wrdfd 14418 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ++ 𝑈):(0..^((♯‘𝑇) + (♯‘𝑈)))⟶𝐴) |
| 267 | 266 | fdmd 6657 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑇 ++ 𝑈) = (0..^((♯‘𝑇) + (♯‘𝑈)))) |
| 268 | 267 | difeq1d 4073 |
. . . . . . . . 9
⊢ (𝜑 → (dom (𝑇 ++ 𝑈) ∖ {0}) = ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖
{0})) |
| 269 | | fzonel 13565 |
. . . . . . . . . . . 12
⊢ ¬
((♯‘𝑇) +
(♯‘𝑈)) ∈
(0..^((♯‘𝑇) +
(♯‘𝑈))) |
| 270 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0})) → ((♯‘𝑇) + (♯‘𝑈)) ∈ ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖
{0})) |
| 271 | 270 | eldifad 3912 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0})) → ((♯‘𝑇) + (♯‘𝑈)) ∈ (0..^((♯‘𝑇) + (♯‘𝑈)))) |
| 272 | 271 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((♯‘𝑇) + (♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) → ((♯‘𝑇) + (♯‘𝑈)) ∈ (0..^((♯‘𝑇) + (♯‘𝑈))))) |
| 273 | 269, 272 | mtoi 199 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬
((♯‘𝑇) +
(♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0})) |
| 274 | | difsn 4748 |
. . . . . . . . . . . 12
⊢ (¬
((♯‘𝑇) +
(♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) → (((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0}) ∖
{((♯‘𝑇) +
(♯‘𝑈))}) =
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0})) |
| 275 | 274 | eqcomd 2736 |
. . . . . . . . . . 11
⊢ (¬
((♯‘𝑇) +
(♯‘𝑈)) ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) → ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0}) =
(((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) ∖ {((♯‘𝑇) + (♯‘𝑈))})) |
| 276 | 273, 275 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) = (((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0}) ∖
{((♯‘𝑇) +
(♯‘𝑈))})) |
| 277 | | difpr 4753 |
. . . . . . . . . 10
⊢
((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) =
(((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) ∖ {((♯‘𝑇) + (♯‘𝑈))}) |
| 278 | 276, 277 | eqtr4di 2783 |
. . . . . . . . 9
⊢ (𝜑 →
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0}) = ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 279 | 268, 278 | eqtrd 2765 |
. . . . . . . 8
⊢ (𝜑 → (dom (𝑇 ++ 𝑈) ∖ {0}) = ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 280 | 279 | eleq2d 2815 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0}) ↔ 𝑛 ∈ ((0..^((♯‘𝑇) + (♯‘𝑈))) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 281 | | eldif 3910 |
. . . . . . 7
⊢ (𝑛 ∈
((0..^((♯‘𝑇) +
(♯‘𝑈))) ∖
{0, ((♯‘𝑇) +
(♯‘𝑈))}) ↔
(𝑛 ∈
(0..^((♯‘𝑇) +
(♯‘𝑈))) ∧
¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 282 | 280, 281 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0}) ↔ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 283 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
(0..^(♯‘𝑇)))
→ 𝑛 ∈
(0..^(♯‘𝑇))) |
| 284 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
(0..^(♯‘𝑇)))
→ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}) |
| 285 | 283, 284 | eldifd 3911 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
(0..^(♯‘𝑇)))
→ 𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))})) |
| 286 | 285 | orcd 873 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
(0..^(♯‘𝑇)))
→ (𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 287 | | exmidd 895 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ {(♯‘𝑇)} ∨ ¬ 𝑛 ∈ {(♯‘𝑇)})) |
| 288 | | idd 24 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ {(♯‘𝑇)} → 𝑛 ∈ {(♯‘𝑇)})) |
| 289 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → ¬ 𝑛 ∈ {0, ((♯‘𝑇) + (♯‘𝑈))}) |
| 290 | 288, 289 | jctird 526 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ {(♯‘𝑇)} → (𝑛 ∈ {(♯‘𝑇)} ∧ ¬ 𝑛 ∈ {0, ((♯‘𝑇) + (♯‘𝑈))}))) |
| 291 | | eldif 3910 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) ↔
(𝑛 ∈
{(♯‘𝑇)} ∧
¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 292 | 290, 291 | imbitrrdi 252 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ {(♯‘𝑇)} → 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}))) |
| 293 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (¬ 𝑛 ∈ {(♯‘𝑇)} → ¬ 𝑛 ∈ {(♯‘𝑇)})) |
| 294 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → 𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) |
| 295 | 293, 294 | jctild 525 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (¬ 𝑛 ∈ {(♯‘𝑇)} → (𝑛 ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {(♯‘𝑇)}))) |
| 296 | | eldif 3910 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)}) ↔
(𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {(♯‘𝑇)})) |
| 297 | 295, 296 | imbitrrdi 252 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (¬ 𝑛 ∈ {(♯‘𝑇)} → 𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}))) |
| 298 | 297, 289 | jctird 526 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (¬ 𝑛 ∈ {(♯‘𝑇)} → (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 299 | | eldif 3910 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖
{(♯‘𝑇)})
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ↔ (𝑛 ∈ (((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) |
| 300 | 298, 299 | imbitrrdi 252 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (¬ 𝑛 ∈ {(♯‘𝑇)} → 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 301 | 292, 300 | orim12d 966 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → ((𝑛 ∈ {(♯‘𝑇)} ∨ ¬ 𝑛 ∈ {(♯‘𝑇)}) → (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 302 | 287, 301 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 303 | 302 | olcd 874 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))})) ∧
𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) ∨
(𝑛 ∈
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 304 | 201 | anim1ci 616 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈)))) → (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ (♯‘𝑇) ∈
ℤ)) |
| 305 | 304 | adantrr 717 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 ∈
(0..^((♯‘𝑇) +
(♯‘𝑈))) ∧
(♯‘𝑇) ∈
ℤ)) |
| 306 | | fzospliti 13583 |
. . . . . . . 8
⊢ ((𝑛 ∈
(0..^((♯‘𝑇) +
(♯‘𝑈))) ∧
(♯‘𝑇) ∈
ℤ) → (𝑛 ∈
(0..^(♯‘𝑇))
∨ 𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))))) |
| 307 | 305, 306 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 ∈
(0..^(♯‘𝑇))
∨ 𝑛 ∈
((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))))) |
| 308 | 286, 303,
307 | mpjaodan 960 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (0..^((♯‘𝑇) + (♯‘𝑈))) ∧ ¬ 𝑛 ∈ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
→ (𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 309 | 282, 308 | sylbida 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) → (𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) ∨
(𝑛 ∈
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 310 | | 3orass 1089 |
. . . . 5
⊢ ((𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))
↔ (𝑛 ∈
((0..^(♯‘𝑇))
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ (𝑛 ∈ ({(♯‘𝑇)} ∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))})))) |
| 311 | 309, 310 | sylibr 234 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) → (𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}) ∨
𝑛 ∈
({(♯‘𝑇)}
∖ {0, ((♯‘𝑇) + (♯‘𝑈))}) ∨ 𝑛 ∈ ((((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))) ∖ {(♯‘𝑇)}) ∖ {0,
((♯‘𝑇) +
(♯‘𝑈))}))) |
| 312 | 40, 155, 262, 311 | mpjao3dan 1434 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})) → ((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 313 | 312 | ralrimiva 3122 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛)) |
| 314 | | ischn 18505 |
. 2
⊢ ((𝑇 ++ 𝑈) ∈ ( < Chain 𝐴) ↔ ((𝑇 ++ 𝑈) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (𝑇 ++ 𝑈) ∖ {0})((𝑇 ++ 𝑈)‘(𝑛 − 1)) < ((𝑇 ++ 𝑈)‘𝑛))) |
| 315 | 6, 313, 314 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑇 ++ 𝑈) ∈ ( < Chain 𝐴)) |