Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldext2chn Structured version   Visualization version   GIF version

Theorem fldext2chn 33719
Description: In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
fldext2chn.l < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
fldext2chn.t (𝜑𝑇 ∈ ( < ChainField))
fldext2chn.1 (𝜑 → (𝑇‘0) = 𝑄)
fldext2chn.2 (𝜑 → (lastS‘𝑇) = 𝐹)
fldext2chn.3 (𝜑 → 0 < (♯‘𝑇))
Assertion
Ref Expression
fldext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝑇,𝑛   𝜑,𝑛   𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝑄(𝑒,𝑓,𝑛)   < (𝑒,𝑓,𝑛)   𝑇(𝑒,𝑓)   𝐹(𝑒,𝑓,𝑛)

Proof of Theorem fldext2chn
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldext2chn.3 . . . 4 (𝜑 → 0 < (♯‘𝑇))
2 fveq2 6920 . . . . . . 7 (𝑑 = ∅ → (♯‘𝑑) = (♯‘∅))
32breq2d 5178 . . . . . 6 (𝑑 = ∅ → (0 < (♯‘𝑑) ↔ 0 < (♯‘∅)))
4 fveq2 6920 . . . . . . . 8 (𝑑 = ∅ → (lastS‘𝑑) = (lastS‘∅))
5 fveq1 6919 . . . . . . . 8 (𝑑 = ∅ → (𝑑‘0) = (∅‘0))
64, 5breq12d 5179 . . . . . . 7 (𝑑 = ∅ → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘∅)/FldExt(∅‘0)))
74, 5oveq12d 7466 . . . . . . . . 9 (𝑑 = ∅ → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘∅)[:](∅‘0)))
87eqeq1d 2742 . . . . . . . 8 (𝑑 = ∅ → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
98rexbidv 3185 . . . . . . 7 (𝑑 = ∅ → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
106, 9anbi12d 631 . . . . . 6 (𝑑 = ∅ → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
113, 10imbi12d 344 . . . . 5 (𝑑 = ∅ → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))))
12 fveq2 6920 . . . . . . 7 (𝑑 = 𝑐 → (♯‘𝑑) = (♯‘𝑐))
1312breq2d 5178 . . . . . 6 (𝑑 = 𝑐 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑐)))
14 fveq2 6920 . . . . . . . 8 (𝑑 = 𝑐 → (lastS‘𝑑) = (lastS‘𝑐))
15 fveq1 6919 . . . . . . . 8 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
1614, 15breq12d 5179 . . . . . . 7 (𝑑 = 𝑐 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑐)/FldExt(𝑐‘0)))
1714, 15oveq12d 7466 . . . . . . . . 9 (𝑑 = 𝑐 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑐)[:](𝑐‘0)))
1817eqeq1d 2742 . . . . . . . 8 (𝑑 = 𝑐 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
1918rexbidv 3185 . . . . . . 7 (𝑑 = 𝑐 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
2016, 19anbi12d 631 . . . . . 6 (𝑑 = 𝑐 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
2113, 20imbi12d 344 . . . . 5 (𝑑 = 𝑐 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))))
22 fveq2 6920 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (♯‘𝑑) = (♯‘(𝑐 ++ ⟨“𝑔”⟩)))
2322breq2d 5178 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (0 < (♯‘𝑑) ↔ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))))
24 fveq2 6920 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (lastS‘𝑑) = (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))
25 fveq1 6919 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑑‘0) = ((𝑐 ++ ⟨“𝑔”⟩)‘0))
2624, 25breq12d 5179 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2724, 25oveq12d 7466 . . . . . . . . . 10 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2827eqeq1d 2742 . . . . . . . . 9 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
2928rexbidv 3185 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
30 oveq2 7456 . . . . . . . . . 10 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
3130eqeq2d 2751 . . . . . . . . 9 (𝑛 = 𝑚 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3231cbvrexvw 3244 . . . . . . . 8 (∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
3329, 32bitrdi 287 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3426, 33anbi12d 631 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
3523, 34imbi12d 344 . . . . 5 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))))
36 fveq2 6920 . . . . . . 7 (𝑑 = 𝑇 → (♯‘𝑑) = (♯‘𝑇))
3736breq2d 5178 . . . . . 6 (𝑑 = 𝑇 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑇)))
38 fveq2 6920 . . . . . . . 8 (𝑑 = 𝑇 → (lastS‘𝑑) = (lastS‘𝑇))
39 fveq1 6919 . . . . . . . 8 (𝑑 = 𝑇 → (𝑑‘0) = (𝑇‘0))
4038, 39breq12d 5179 . . . . . . 7 (𝑑 = 𝑇 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑇)/FldExt(𝑇‘0)))
4138, 39oveq12d 7466 . . . . . . . . 9 (𝑑 = 𝑇 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑇)[:](𝑇‘0)))
4241eqeq1d 2742 . . . . . . . 8 (𝑑 = 𝑇 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4342rexbidv 3185 . . . . . . 7 (𝑑 = 𝑇 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4440, 43anbi12d 631 . . . . . 6 (𝑑 = 𝑇 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
4537, 44imbi12d 344 . . . . 5 (𝑑 = 𝑇 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))))
46 fldext2chn.t . . . . 5 (𝜑𝑇 ∈ ( < ChainField))
47 0re 11292 . . . . . . . . 9 0 ∈ ℝ
4847ltnri 11399 . . . . . . . 8 ¬ 0 < 0
4948a1i 11 . . . . . . 7 (𝜑 → ¬ 0 < 0)
50 hash0 14416 . . . . . . . 8 (♯‘∅) = 0
5150breq2i 5174 . . . . . . 7 (0 < (♯‘∅) ↔ 0 < 0)
5249, 51sylnibr 329 . . . . . 6 (𝜑 → ¬ 0 < (♯‘∅))
5352pm2.21d 121 . . . . 5 (𝜑 → (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
54 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔 ∈ Field)
55 fldextid 33672 . . . . . . . . . 10 (𝑔 ∈ Field → 𝑔/FldExt𝑔)
5654, 55syl 17 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔/FldExt𝑔)
57 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ ( < ChainField))
5857chnwrd 32980 . . . . . . . . . 10 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ Word Field)
59 lswccats1 14682 . . . . . . . . . 10 ((𝑐 ∈ Word Field ∧ 𝑔 ∈ Field) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
6058, 54, 59syl2an2r 684 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
61 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑐 = ∅)
6261oveq1d 7463 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = (∅ ++ ⟨“𝑔”⟩))
63 s0s1 14971 . . . . . . . . . . . 12 ⟨“𝑔”⟩ = (∅ ++ ⟨“𝑔”⟩)
6462, 63eqtr4di 2798 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = ⟨“𝑔”⟩)
6564fveq1d 6922 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (⟨“𝑔”⟩‘0))
66 s1fv 14658 . . . . . . . . . . 11 (𝑔 ∈ Field → (⟨“𝑔”⟩‘0) = 𝑔)
6754, 66syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (⟨“𝑔”⟩‘0) = 𝑔)
6865, 67eqtrd 2780 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = 𝑔)
6956, 60, 683brtr4d 5198 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
70 oveq2 7456 . . . . . . . . . . 11 (𝑚 = 0 → (2↑𝑚) = (2↑0))
71 2cn 12368 . . . . . . . . . . . 12 2 ∈ ℂ
72 exp0 14116 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
7371, 72ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
7470, 73eqtrdi 2796 . . . . . . . . . 10 (𝑚 = 0 → (2↑𝑚) = 1)
7574eqeq2d 2751 . . . . . . . . 9 (𝑚 = 0 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1))
76 0nn0 12568 . . . . . . . . . 10 0 ∈ ℕ0
7776a1i 11 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 0 ∈ ℕ0)
7860, 68oveq12d 7466 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:]𝑔))
79 extdgid 33673 . . . . . . . . . . 11 (𝑔 ∈ Field → (𝑔[:]𝑔) = 1)
8054, 79syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑔[:]𝑔) = 1)
8178, 80eqtrd 2780 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1)
8275, 77, 81rspcedvdw 3638 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
8369, 82jca 511 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
84 simp-6r 787 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔))
85 simpllr 775 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ≠ ∅)
8685neneqd 2951 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ¬ 𝑐 = ∅)
8784, 86orcnd 877 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) < 𝑔)
8858ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ∈ Word Field)
89 lswcl 14616 . . . . . . . . . . . . . . 15 ((𝑐 ∈ Word Field ∧ 𝑐 ≠ ∅) → (lastS‘𝑐) ∈ Field)
9088, 85, 89syl2anc 583 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) ∈ Field)
91 simp-7r 789 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔 ∈ Field)
92 breq12 5171 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒/FldExt𝑓𝑔/FldExt(lastS‘𝑐)))
93 oveq12 7457 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒[:]𝑓) = (𝑔[:](lastS‘𝑐)))
9493eqeq1d 2742 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒[:]𝑓) = 2 ↔ (𝑔[:](lastS‘𝑐)) = 2))
9592, 94anbi12d 631 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9695ancoms 458 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑐) ∧ 𝑒 = 𝑔) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
97 fldext2chn.l . . . . . . . . . . . . . . 15 < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
9896, 97brabga 5553 . . . . . . . . . . . . . 14 (((lastS‘𝑐) ∈ Field ∧ 𝑔 ∈ Field) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9990, 91, 98syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
10087, 99mpbid 232 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))
101100simpld 494 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔/FldExt(lastS‘𝑐))
102 hashgt0 14437 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ( < ChainField) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
10357, 102sylan 579 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
104 simpllr 775 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
105103, 104mpd 15 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
106105simprd 495 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))
107 oveq2 7456 . . . . . . . . . . . . . 14 (𝑛 = 𝑜 → (2↑𝑛) = (2↑𝑜))
108107eqeq2d 2751 . . . . . . . . . . . . 13 (𝑛 = 𝑜 → (((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)))
109108cbvrexvw 3244 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
110106, 109sylib 218 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
111101, 110r19.29a 3168 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(lastS‘𝑐))
112105simpld 494 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘𝑐)/FldExt(𝑐‘0))
113 fldexttr 33671 . . . . . . . . . 10 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → 𝑔/FldExt(𝑐‘0))
114111, 112, 113syl2anc 583 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(𝑐‘0))
11588, 91, 59syl2anc 583 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
116115, 110r19.29a 3168 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
11791s1cld 14651 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ⟨“𝑔”⟩ ∈ Word Field)
118103ad2antrr 725 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 0 < (♯‘𝑐))
119 ccatfv0 14631 . . . . . . . . . . 11 ((𝑐 ∈ Word Field ∧ ⟨“𝑔”⟩ ∈ Word Field ∧ 0 < (♯‘𝑐)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
12088, 117, 118, 119syl3anc 1371 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
121120, 110r19.29a 3168 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
122114, 116, 1213brtr4d 5198 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
123 oveq2 7456 . . . . . . . . . . 11 (𝑚 = (𝑜 + 1) → (2↑𝑚) = (2↑(𝑜 + 1)))
124123eqeq2d 2751 . . . . . . . . . 10 (𝑚 = (𝑜 + 1) → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1))))
125 simplr 768 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑜 ∈ ℕ0)
126 1nn0 12569 . . . . . . . . . . . 12 1 ∈ ℕ0
127126a1i 11 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 1 ∈ ℕ0)
128125, 127nn0addcld 12617 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑜 + 1) ∈ ℕ0)
129115, 120oveq12d 7466 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:](𝑐‘0)))
130112ad2antrr 725 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐)/FldExt(𝑐‘0))
131 extdgmul 33674 . . . . . . . . . . . 12 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
132101, 130, 131syl2anc 583 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
133 2cnd 12371 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℂ)
134133, 125expcld 14196 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℂ)
135133, 134mulcomd 11311 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 · (2↑𝑜)) = ((2↑𝑜) · 2))
136100simprd 495 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](lastS‘𝑐)) = 2)
137 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
138136, 137oveq12d 7466 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 ·e (2↑𝑜)))
139 2re 12367 . . . . . . . . . . . . . . 15 2 ∈ ℝ
140139a1i 11 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℝ)
141140, 125reexpcld 14213 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℝ)
142 rexmul 13333 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (2↑𝑜) ∈ ℝ) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
143140, 141, 142syl2anc 583 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
144138, 143eqtrd 2780 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 · (2↑𝑜)))
145133, 125expp1d 14197 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑(𝑜 + 1)) = ((2↑𝑜) · 2))
146135, 144, 1453eqtr4d 2790 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2↑(𝑜 + 1)))
147129, 132, 1463eqtrd 2784 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1)))
148124, 128, 147rspcedvdw 3638 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
149148, 110r19.29a 3168 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
150122, 149jca 511 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
15183, 150pm2.61dane 3035 . . . . . 6 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
152151ex 412 . . . . 5 (((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) → (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
15311, 21, 35, 45, 46, 53, 152chnind 32983 . . . 4 (𝜑 → (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
1541, 153mpd 15 . . 3 (𝜑 → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
155154simprd 495 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))
156 fldext2chn.2 . . . . 5 (𝜑 → (lastS‘𝑇) = 𝐹)
157 fldext2chn.1 . . . . 5 (𝜑 → (𝑇‘0) = 𝑄)
158156, 157oveq12d 7466 . . . 4 (𝜑 → ((lastS‘𝑇)[:](𝑇‘0)) = (𝐹[:]𝑄))
159158eqeq1d 2742 . . 3 (𝜑 → (((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ (𝐹[:]𝑄) = (2↑𝑛)))
160159rexbidv 3185 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)))
161155, 160mpbid 232 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  c0 4352   class class class wbr 5166  {copab 5228  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  2c2 12348  0cn0 12553   ·e cxmu 13174  cexp 14112  chash 14379  Word cword 14562  lastSclsw 14610   ++ cconcat 14618  ⟨“cs1 14643  Fieldcfield 20752  Chaincchn 32977  /FldExtcfldext 33651  [:]cextdg 33654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xmul 13177  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ocomp 17332  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850  df-chn 32978  df-dim 33612  df-fldext 33655  df-extdg 33656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator