Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldext2chn Structured version   Visualization version   GIF version

Theorem fldext2chn 33734
Description: In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
fldext2chn.l < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
fldext2chn.t (𝜑𝑇 ∈ ( < ChainField))
fldext2chn.1 (𝜑 → (𝑇‘0) = 𝑄)
fldext2chn.2 (𝜑 → (lastS‘𝑇) = 𝐹)
fldext2chn.3 (𝜑 → 0 < (♯‘𝑇))
Assertion
Ref Expression
fldext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝑇,𝑛   𝜑,𝑛   𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝑄(𝑒,𝑓,𝑛)   < (𝑒,𝑓,𝑛)   𝑇(𝑒,𝑓)   𝐹(𝑒,𝑓,𝑛)

Proof of Theorem fldext2chn
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldext2chn.3 . . . 4 (𝜑 → 0 < (♯‘𝑇))
2 fveq2 6907 . . . . . . 7 (𝑑 = ∅ → (♯‘𝑑) = (♯‘∅))
32breq2d 5160 . . . . . 6 (𝑑 = ∅ → (0 < (♯‘𝑑) ↔ 0 < (♯‘∅)))
4 fveq2 6907 . . . . . . . 8 (𝑑 = ∅ → (lastS‘𝑑) = (lastS‘∅))
5 fveq1 6906 . . . . . . . 8 (𝑑 = ∅ → (𝑑‘0) = (∅‘0))
64, 5breq12d 5161 . . . . . . 7 (𝑑 = ∅ → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘∅)/FldExt(∅‘0)))
74, 5oveq12d 7449 . . . . . . . . 9 (𝑑 = ∅ → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘∅)[:](∅‘0)))
87eqeq1d 2737 . . . . . . . 8 (𝑑 = ∅ → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
98rexbidv 3177 . . . . . . 7 (𝑑 = ∅ → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
106, 9anbi12d 632 . . . . . 6 (𝑑 = ∅ → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
113, 10imbi12d 344 . . . . 5 (𝑑 = ∅ → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))))
12 fveq2 6907 . . . . . . 7 (𝑑 = 𝑐 → (♯‘𝑑) = (♯‘𝑐))
1312breq2d 5160 . . . . . 6 (𝑑 = 𝑐 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑐)))
14 fveq2 6907 . . . . . . . 8 (𝑑 = 𝑐 → (lastS‘𝑑) = (lastS‘𝑐))
15 fveq1 6906 . . . . . . . 8 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
1614, 15breq12d 5161 . . . . . . 7 (𝑑 = 𝑐 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑐)/FldExt(𝑐‘0)))
1714, 15oveq12d 7449 . . . . . . . . 9 (𝑑 = 𝑐 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑐)[:](𝑐‘0)))
1817eqeq1d 2737 . . . . . . . 8 (𝑑 = 𝑐 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
1918rexbidv 3177 . . . . . . 7 (𝑑 = 𝑐 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
2016, 19anbi12d 632 . . . . . 6 (𝑑 = 𝑐 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
2113, 20imbi12d 344 . . . . 5 (𝑑 = 𝑐 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))))
22 fveq2 6907 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (♯‘𝑑) = (♯‘(𝑐 ++ ⟨“𝑔”⟩)))
2322breq2d 5160 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (0 < (♯‘𝑑) ↔ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))))
24 fveq2 6907 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (lastS‘𝑑) = (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))
25 fveq1 6906 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑑‘0) = ((𝑐 ++ ⟨“𝑔”⟩)‘0))
2624, 25breq12d 5161 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2724, 25oveq12d 7449 . . . . . . . . . 10 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2827eqeq1d 2737 . . . . . . . . 9 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
2928rexbidv 3177 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
30 oveq2 7439 . . . . . . . . . 10 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
3130eqeq2d 2746 . . . . . . . . 9 (𝑛 = 𝑚 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3231cbvrexvw 3236 . . . . . . . 8 (∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
3329, 32bitrdi 287 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3426, 33anbi12d 632 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
3523, 34imbi12d 344 . . . . 5 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))))
36 fveq2 6907 . . . . . . 7 (𝑑 = 𝑇 → (♯‘𝑑) = (♯‘𝑇))
3736breq2d 5160 . . . . . 6 (𝑑 = 𝑇 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑇)))
38 fveq2 6907 . . . . . . . 8 (𝑑 = 𝑇 → (lastS‘𝑑) = (lastS‘𝑇))
39 fveq1 6906 . . . . . . . 8 (𝑑 = 𝑇 → (𝑑‘0) = (𝑇‘0))
4038, 39breq12d 5161 . . . . . . 7 (𝑑 = 𝑇 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑇)/FldExt(𝑇‘0)))
4138, 39oveq12d 7449 . . . . . . . . 9 (𝑑 = 𝑇 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑇)[:](𝑇‘0)))
4241eqeq1d 2737 . . . . . . . 8 (𝑑 = 𝑇 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4342rexbidv 3177 . . . . . . 7 (𝑑 = 𝑇 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4440, 43anbi12d 632 . . . . . 6 (𝑑 = 𝑇 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
4537, 44imbi12d 344 . . . . 5 (𝑑 = 𝑇 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))))
46 fldext2chn.t . . . . 5 (𝜑𝑇 ∈ ( < ChainField))
47 0re 11261 . . . . . . . . 9 0 ∈ ℝ
4847ltnri 11368 . . . . . . . 8 ¬ 0 < 0
4948a1i 11 . . . . . . 7 (𝜑 → ¬ 0 < 0)
50 hash0 14403 . . . . . . . 8 (♯‘∅) = 0
5150breq2i 5156 . . . . . . 7 (0 < (♯‘∅) ↔ 0 < 0)
5249, 51sylnibr 329 . . . . . 6 (𝜑 → ¬ 0 < (♯‘∅))
5352pm2.21d 121 . . . . 5 (𝜑 → (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
54 simp-5r 786 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔 ∈ Field)
55 fldextid 33687 . . . . . . . . . 10 (𝑔 ∈ Field → 𝑔/FldExt𝑔)
5654, 55syl 17 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔/FldExt𝑔)
57 simp-5r 786 . . . . . . . . . . 11 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ ( < ChainField))
5857chnwrd 32982 . . . . . . . . . 10 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ Word Field)
59 lswccats1 14669 . . . . . . . . . 10 ((𝑐 ∈ Word Field ∧ 𝑔 ∈ Field) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
6058, 54, 59syl2an2r 685 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
61 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑐 = ∅)
6261oveq1d 7446 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = (∅ ++ ⟨“𝑔”⟩))
63 s0s1 14958 . . . . . . . . . . . 12 ⟨“𝑔”⟩ = (∅ ++ ⟨“𝑔”⟩)
6462, 63eqtr4di 2793 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = ⟨“𝑔”⟩)
6564fveq1d 6909 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (⟨“𝑔”⟩‘0))
66 s1fv 14645 . . . . . . . . . . 11 (𝑔 ∈ Field → (⟨“𝑔”⟩‘0) = 𝑔)
6754, 66syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (⟨“𝑔”⟩‘0) = 𝑔)
6865, 67eqtrd 2775 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = 𝑔)
6956, 60, 683brtr4d 5180 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
70 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 0 → (2↑𝑚) = (2↑0))
71 2cn 12339 . . . . . . . . . . . 12 2 ∈ ℂ
72 exp0 14103 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
7371, 72ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
7470, 73eqtrdi 2791 . . . . . . . . . 10 (𝑚 = 0 → (2↑𝑚) = 1)
7574eqeq2d 2746 . . . . . . . . 9 (𝑚 = 0 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1))
76 0nn0 12539 . . . . . . . . . 10 0 ∈ ℕ0
7776a1i 11 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 0 ∈ ℕ0)
7860, 68oveq12d 7449 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:]𝑔))
79 extdgid 33688 . . . . . . . . . . 11 (𝑔 ∈ Field → (𝑔[:]𝑔) = 1)
8054, 79syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑔[:]𝑔) = 1)
8178, 80eqtrd 2775 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1)
8275, 77, 81rspcedvdw 3625 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
8369, 82jca 511 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
84 simp-6r 788 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔))
85 simpllr 776 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ≠ ∅)
8685neneqd 2943 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ¬ 𝑐 = ∅)
8784, 86orcnd 878 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) < 𝑔)
8858ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ∈ Word Field)
89 lswcl 14603 . . . . . . . . . . . . . . 15 ((𝑐 ∈ Word Field ∧ 𝑐 ≠ ∅) → (lastS‘𝑐) ∈ Field)
9088, 85, 89syl2anc 584 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) ∈ Field)
91 simp-7r 790 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔 ∈ Field)
92 breq12 5153 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒/FldExt𝑓𝑔/FldExt(lastS‘𝑐)))
93 oveq12 7440 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒[:]𝑓) = (𝑔[:](lastS‘𝑐)))
9493eqeq1d 2737 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒[:]𝑓) = 2 ↔ (𝑔[:](lastS‘𝑐)) = 2))
9592, 94anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9695ancoms 458 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑐) ∧ 𝑒 = 𝑔) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
97 fldext2chn.l . . . . . . . . . . . . . . 15 < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
9896, 97brabga 5544 . . . . . . . . . . . . . 14 (((lastS‘𝑐) ∈ Field ∧ 𝑔 ∈ Field) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9990, 91, 98syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
10087, 99mpbid 232 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))
101100simpld 494 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔/FldExt(lastS‘𝑐))
102 hashgt0 14424 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ( < ChainField) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
10357, 102sylan 580 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
104 simpllr 776 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
105103, 104mpd 15 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
106105simprd 495 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))
107 oveq2 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝑜 → (2↑𝑛) = (2↑𝑜))
108107eqeq2d 2746 . . . . . . . . . . . . 13 (𝑛 = 𝑜 → (((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)))
109108cbvrexvw 3236 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
110106, 109sylib 218 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
111101, 110r19.29a 3160 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(lastS‘𝑐))
112105simpld 494 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘𝑐)/FldExt(𝑐‘0))
113 fldexttr 33686 . . . . . . . . . 10 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → 𝑔/FldExt(𝑐‘0))
114111, 112, 113syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(𝑐‘0))
11588, 91, 59syl2anc 584 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
116115, 110r19.29a 3160 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
11791s1cld 14638 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ⟨“𝑔”⟩ ∈ Word Field)
118103ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 0 < (♯‘𝑐))
119 ccatfv0 14618 . . . . . . . . . . 11 ((𝑐 ∈ Word Field ∧ ⟨“𝑔”⟩ ∈ Word Field ∧ 0 < (♯‘𝑐)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
12088, 117, 118, 119syl3anc 1370 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
121120, 110r19.29a 3160 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
122114, 116, 1213brtr4d 5180 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
123 oveq2 7439 . . . . . . . . . . 11 (𝑚 = (𝑜 + 1) → (2↑𝑚) = (2↑(𝑜 + 1)))
124123eqeq2d 2746 . . . . . . . . . 10 (𝑚 = (𝑜 + 1) → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1))))
125 simplr 769 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑜 ∈ ℕ0)
126 1nn0 12540 . . . . . . . . . . . 12 1 ∈ ℕ0
127126a1i 11 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 1 ∈ ℕ0)
128125, 127nn0addcld 12589 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑜 + 1) ∈ ℕ0)
129115, 120oveq12d 7449 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:](𝑐‘0)))
130112ad2antrr 726 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐)/FldExt(𝑐‘0))
131 extdgmul 33689 . . . . . . . . . . . 12 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
132101, 130, 131syl2anc 584 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
133 2cnd 12342 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℂ)
134133, 125expcld 14183 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℂ)
135133, 134mulcomd 11280 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 · (2↑𝑜)) = ((2↑𝑜) · 2))
136100simprd 495 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](lastS‘𝑐)) = 2)
137 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
138136, 137oveq12d 7449 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 ·e (2↑𝑜)))
139 2re 12338 . . . . . . . . . . . . . . 15 2 ∈ ℝ
140139a1i 11 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℝ)
141140, 125reexpcld 14200 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℝ)
142 rexmul 13310 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (2↑𝑜) ∈ ℝ) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
143140, 141, 142syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
144138, 143eqtrd 2775 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 · (2↑𝑜)))
145133, 125expp1d 14184 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑(𝑜 + 1)) = ((2↑𝑜) · 2))
146135, 144, 1453eqtr4d 2785 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2↑(𝑜 + 1)))
147129, 132, 1463eqtrd 2779 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1)))
148124, 128, 147rspcedvdw 3625 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
149148, 110r19.29a 3160 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
150122, 149jca 511 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
15183, 150pm2.61dane 3027 . . . . . 6 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
152151ex 412 . . . . 5 (((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) → (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
15311, 21, 35, 45, 46, 53, 152chnind 32985 . . . 4 (𝜑 → (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
1541, 153mpd 15 . . 3 (𝜑 → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
155154simprd 495 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))
156 fldext2chn.2 . . . . 5 (𝜑 → (lastS‘𝑇) = 𝐹)
157 fldext2chn.1 . . . . 5 (𝜑 → (𝑇‘0) = 𝑄)
158156, 157oveq12d 7449 . . . 4 (𝜑 → ((lastS‘𝑇)[:](𝑇‘0)) = (𝐹[:]𝑄))
159158eqeq1d 2737 . . 3 (𝜑 → (((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ (𝐹[:]𝑄) = (2↑𝑛)))
160159rexbidv 3177 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)))
161155, 160mpbid 232 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068  c0 4339   class class class wbr 5148  {copab 5210  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  2c2 12319  0cn0 12524   ·e cxmu 13151  cexp 14099  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630  Fieldcfield 20747  Chaincchn 32979  /FldExtcfldext 33666  [:]cextdg 33669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-r1 9802  df-rank 9803  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xmul 13154  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-lindf 21844  df-linds 21845  df-chn 32980  df-dim 33627  df-fldext 33670  df-extdg 33671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator