Step | Hyp | Ref
| Expression |
1 | | fldext2chn.3 |
. . . 4
⊢ (𝜑 → 0 <
(♯‘𝑇)) |
2 | | fveq2 6893 |
. . . . . . 7
⊢ (𝑑 = ∅ →
(♯‘𝑑) =
(♯‘∅)) |
3 | 2 | breq2d 5157 |
. . . . . 6
⊢ (𝑑 = ∅ → (0 <
(♯‘𝑑) ↔ 0
< (♯‘∅))) |
4 | | fveq2 6893 |
. . . . . . . 8
⊢ (𝑑 = ∅ →
(lastS‘𝑑) =
(lastS‘∅)) |
5 | | fveq1 6892 |
. . . . . . . 8
⊢ (𝑑 = ∅ → (𝑑‘0) =
(∅‘0)) |
6 | 4, 5 | breq12d 5158 |
. . . . . . 7
⊢ (𝑑 = ∅ →
((lastS‘𝑑)/FldExt(𝑑‘0) ↔
(lastS‘∅)/FldExt(∅‘0))) |
7 | 4, 5 | oveq12d 7434 |
. . . . . . . . 9
⊢ (𝑑 = ∅ →
((lastS‘𝑑)[:](𝑑‘0)) =
((lastS‘∅)[:](∅‘0))) |
8 | 7 | eqeq1d 2728 |
. . . . . . . 8
⊢ (𝑑 = ∅ →
(((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔
((lastS‘∅)[:](∅‘0)) = (2↑𝑛))) |
9 | 8 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑑 = ∅ → (∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0
((lastS‘∅)[:](∅‘0)) = (2↑𝑛))) |
10 | 6, 9 | anbi12d 630 |
. . . . . 6
⊢ (𝑑 = ∅ →
(((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔
((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))) |
11 | 3, 10 | imbi12d 343 |
. . . . 5
⊢ (𝑑 = ∅ → ((0 <
(♯‘𝑑) →
((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 <
(♯‘∅) →
((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))) |
12 | | fveq2 6893 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → (♯‘𝑑) = (♯‘𝑐)) |
13 | 12 | breq2d 5157 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (0 < (♯‘𝑑) ↔ 0 <
(♯‘𝑐))) |
14 | | fveq2 6893 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (lastS‘𝑑) = (lastS‘𝑐)) |
15 | | fveq1 6892 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0)) |
16 | 14, 15 | breq12d 5158 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑐)/FldExt(𝑐‘0))) |
17 | 14, 15 | oveq12d 7434 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑐)[:](𝑐‘0))) |
18 | 17 | eqeq1d 2728 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))) |
19 | 18 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → (∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))) |
20 | 16, 19 | anbi12d 630 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) |
21 | 13, 20 | imbi12d 343 |
. . . . 5
⊢ (𝑑 = 𝑐 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))) |
22 | | fveq2 6893 |
. . . . . . 7
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (♯‘𝑑) = (♯‘(𝑐 ++ 〈“𝑔”〉))) |
23 | 22 | breq2d 5157 |
. . . . . 6
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (0 <
(♯‘𝑑) ↔ 0
< (♯‘(𝑐 ++
〈“𝑔”〉)))) |
24 | | fveq2 6893 |
. . . . . . . 8
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (lastS‘𝑑) = (lastS‘(𝑐 ++ 〈“𝑔”〉))) |
25 | | fveq1 6892 |
. . . . . . . 8
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (𝑑‘0) = ((𝑐 ++ 〈“𝑔”〉)‘0)) |
26 | 24, 25 | breq12d 5158 |
. . . . . . 7
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔
(lastS‘(𝑐 ++
〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0))) |
27 | 24, 25 | oveq12d 7434 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0))) |
28 | 27 | eqeq1d 2728 |
. . . . . . . . 9
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑛))) |
29 | 28 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑛))) |
30 | | oveq2 7424 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚)) |
31 | 30 | eqeq2d 2737 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
(2↑𝑚))) |
32 | 31 | cbvrexvw 3226 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)) |
33 | 29, 32 | bitrdi 286 |
. . . . . . 7
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚))) |
34 | 26, 33 | anbi12d 630 |
. . . . . 6
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)))) |
35 | 23, 34 | imbi12d 343 |
. . . . 5
⊢ (𝑑 = (𝑐 ++ 〈“𝑔”〉) → ((0 <
(♯‘𝑑) →
((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 <
(♯‘(𝑐 ++
〈“𝑔”〉)) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚))))) |
36 | | fveq2 6893 |
. . . . . . 7
⊢ (𝑑 = 𝑇 → (♯‘𝑑) = (♯‘𝑇)) |
37 | 36 | breq2d 5157 |
. . . . . 6
⊢ (𝑑 = 𝑇 → (0 < (♯‘𝑑) ↔ 0 <
(♯‘𝑇))) |
38 | | fveq2 6893 |
. . . . . . . 8
⊢ (𝑑 = 𝑇 → (lastS‘𝑑) = (lastS‘𝑇)) |
39 | | fveq1 6892 |
. . . . . . . 8
⊢ (𝑑 = 𝑇 → (𝑑‘0) = (𝑇‘0)) |
40 | 38, 39 | breq12d 5158 |
. . . . . . 7
⊢ (𝑑 = 𝑇 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑇)/FldExt(𝑇‘0))) |
41 | 38, 39 | oveq12d 7434 |
. . . . . . . . 9
⊢ (𝑑 = 𝑇 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑇)[:](𝑇‘0))) |
42 | 41 | eqeq1d 2728 |
. . . . . . . 8
⊢ (𝑑 = 𝑇 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))) |
43 | 42 | rexbidv 3169 |
. . . . . . 7
⊢ (𝑑 = 𝑇 → (∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))) |
44 | 40, 43 | anbi12d 630 |
. . . . . 6
⊢ (𝑑 = 𝑇 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))) |
45 | 37, 44 | imbi12d 343 |
. . . . 5
⊢ (𝑑 = 𝑇 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 <
(♯‘𝑇) →
((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))) |
46 | | fldext2chn.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ( <
ChainField)) |
47 | | 0re 11257 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
48 | 47 | ltnri 11364 |
. . . . . . . 8
⊢ ¬ 0
< 0 |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ¬ 0 <
0) |
50 | | hash0 14379 |
. . . . . . . 8
⊢
(♯‘∅) = 0 |
51 | 50 | breq2i 5153 |
. . . . . . 7
⊢ (0 <
(♯‘∅) ↔ 0 < 0) |
52 | 49, 51 | sylnibr 328 |
. . . . . 6
⊢ (𝜑 → ¬ 0 <
(♯‘∅)) |
53 | 52 | pm2.21d 121 |
. . . . 5
⊢ (𝜑 → (0 <
(♯‘∅) →
((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))) |
54 | | simp-5r 784 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → 𝑔 ∈ Field) |
55 | | fldextid 33554 |
. . . . . . . . . 10
⊢ (𝑔 ∈ Field → 𝑔/FldExt𝑔) |
56 | 54, 55 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → 𝑔/FldExt𝑔) |
57 | | simp-5r 784 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) → 𝑐 ∈ ( <
ChainField)) |
58 | 57 | chnwrd 32880 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) → 𝑐 ∈ Word Field) |
59 | | lswccats1 14637 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ Word Field ∧ 𝑔 ∈ Field) →
(lastS‘(𝑐 ++
〈“𝑔”〉)) = 𝑔) |
60 | 58, 54, 59 | syl2an2r 683 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ 〈“𝑔”〉)) = 𝑔) |
61 | | simpr 483 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → 𝑐 = ∅) |
62 | 61 | oveq1d 7431 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (𝑐 ++ 〈“𝑔”〉) = (∅ ++
〈“𝑔”〉)) |
63 | | s0s1 14926 |
. . . . . . . . . . . 12
⊢
〈“𝑔”〉 = (∅ ++
〈“𝑔”〉) |
64 | 62, 63 | eqtr4di 2784 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (𝑐 ++ 〈“𝑔”〉) = 〈“𝑔”〉) |
65 | 64 | fveq1d 6895 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ((𝑐 ++ 〈“𝑔”〉)‘0) = (〈“𝑔”〉‘0)) |
66 | | s1fv 14613 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ Field →
(〈“𝑔”〉‘0) = 𝑔) |
67 | 54, 66 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (〈“𝑔”〉‘0) = 𝑔) |
68 | 65, 67 | eqtrd 2766 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ((𝑐 ++ 〈“𝑔”〉)‘0) = 𝑔) |
69 | 56, 60, 68 | 3brtr4d 5177 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0)) |
70 | | oveq2 7424 |
. . . . . . . . . . 11
⊢ (𝑚 = 0 → (2↑𝑚) = (2↑0)) |
71 | | 2cn 12333 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
72 | | exp0 14079 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℂ → (2↑0) = 1) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(2↑0) = 1 |
74 | 70, 73 | eqtrdi 2782 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (2↑𝑚) = 1) |
75 | 74 | eqeq2d 2737 |
. . . . . . . . 9
⊢ (𝑚 = 0 →
(((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
1)) |
76 | | 0nn0 12533 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
77 | 76 | a1i 11 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → 0 ∈
ℕ0) |
78 | 60, 68 | oveq12d 7434 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
(𝑔[:]𝑔)) |
79 | | extdgid 33555 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ Field → (𝑔[:]𝑔) = 1) |
80 | 54, 79 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → (𝑔[:]𝑔) = 1) |
81 | 78, 80 | eqtrd 2766 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
1) |
82 | 75, 77, 81 | rspcedvdw 3610 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ∃𝑚 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)) |
83 | 69, 82 | jca 510 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚))) |
84 | | simp-6r 786 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) |
85 | | simpllr 774 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ≠ ∅) |
86 | 85 | neneqd 2935 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ¬ 𝑐 = ∅) |
87 | 84, 86 | orcnd 876 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) < 𝑔) |
88 | 58 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ∈ Word Field) |
89 | | lswcl 14571 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ Word Field ∧ 𝑐 ≠ ∅) →
(lastS‘𝑐) ∈
Field) |
90 | 88, 85, 89 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) ∈ Field) |
91 | | simp-7r 788 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔 ∈ Field) |
92 | | breq12 5150 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝑔 ∧ 𝑓 = (lastS‘𝑐)) → (𝑒/FldExt𝑓 ↔ 𝑔/FldExt(lastS‘𝑐))) |
93 | | oveq12 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝑔 ∧ 𝑓 = (lastS‘𝑐)) → (𝑒[:]𝑓) = (𝑔[:](lastS‘𝑐))) |
94 | 93 | eqeq1d 2728 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝑔 ∧ 𝑓 = (lastS‘𝑐)) → ((𝑒[:]𝑓) = 2 ↔ (𝑔[:](lastS‘𝑐)) = 2)) |
95 | 92, 94 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 𝑔 ∧ 𝑓 = (lastS‘𝑐)) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))) |
96 | 95 | ancoms 457 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (lastS‘𝑐) ∧ 𝑒 = 𝑔) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))) |
97 | | fldext2chn.l |
. . . . . . . . . . . . . . 15
⊢ < =
{〈𝑓, 𝑒〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)} |
98 | 96, 97 | brabga 5532 |
. . . . . . . . . . . . . 14
⊢
(((lastS‘𝑐)
∈ Field ∧ 𝑔 ∈
Field) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))) |
99 | 90, 91, 98 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))) |
100 | 87, 99 | mpbid 231 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)) |
101 | 100 | simpld 493 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔/FldExt(lastS‘𝑐)) |
102 | | hashgt0 14400 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ( < ChainField) ∧ 𝑐 ≠ ∅) → 0 <
(♯‘𝑐)) |
103 | 57, 102 | sylan 578 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → 0 <
(♯‘𝑐)) |
104 | | simpllr 774 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) |
105 | 103, 104 | mpd 15 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))) |
106 | 105 | simprd 494 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)) |
107 | | oveq2 7424 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑜 → (2↑𝑛) = (2↑𝑜)) |
108 | 107 | eqeq2d 2737 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑜 → (((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))) |
109 | 108 | cbvrexvw 3226 |
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈
ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ∃𝑜 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) |
110 | 106, 109 | sylib 217 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ∃𝑜 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) |
111 | 101, 110 | r19.29a 3152 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(lastS‘𝑐)) |
112 | 105 | simpld 493 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → (lastS‘𝑐)/FldExt(𝑐‘0)) |
113 | | fldexttr 33553 |
. . . . . . . . . 10
⊢ ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → 𝑔/FldExt(𝑐‘0)) |
114 | 111, 112,
113 | syl2anc 582 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(𝑐‘0)) |
115 | 88, 91, 59 | syl2anc 582 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘(𝑐 ++ 〈“𝑔”〉)) = 𝑔) |
116 | 115, 110 | r19.29a 3152 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ 〈“𝑔”〉)) = 𝑔) |
117 | 91 | s1cld 14606 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 〈“𝑔”〉 ∈ Word
Field) |
118 | 103 | ad2antrr 724 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 0 <
(♯‘𝑐)) |
119 | | ccatfv0 14586 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ Word Field ∧
〈“𝑔”〉
∈ Word Field ∧ 0 < (♯‘𝑐)) → ((𝑐 ++ 〈“𝑔”〉)‘0) = (𝑐‘0)) |
120 | 88, 117, 118, 119 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑐 ++ 〈“𝑔”〉)‘0) = (𝑐‘0)) |
121 | 120, 110 | r19.29a 3152 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ((𝑐 ++ 〈“𝑔”〉)‘0) = (𝑐‘0)) |
122 | 114, 116,
121 | 3brtr4d 5177 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0)) |
123 | | oveq2 7424 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑜 + 1) → (2↑𝑚) = (2↑(𝑜 + 1))) |
124 | 123 | eqeq2d 2737 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑜 + 1) → (((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
(2↑𝑚) ↔
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑(𝑜 + 1)))) |
125 | | simplr 767 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑜 ∈ ℕ0) |
126 | | 1nn0 12534 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ0 |
127 | 126 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 1 ∈
ℕ0) |
128 | 125, 127 | nn0addcld 12582 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑜 + 1) ∈
ℕ0) |
129 | 115, 120 | oveq12d 7434 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
(𝑔[:](𝑐‘0))) |
130 | 112 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐)/FldExt(𝑐‘0)) |
131 | | extdgmul 33556 |
. . . . . . . . . . . 12
⊢ ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0)))) |
132 | 101, 130,
131 | syl2anc 582 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0)))) |
133 | | 2cnd 12336 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈
ℂ) |
134 | 133, 125 | expcld 14159 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈
ℂ) |
135 | 133, 134 | mulcomd 11276 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 ·
(2↑𝑜)) =
((2↑𝑜) ·
2)) |
136 | 100 | simprd 494 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](lastS‘𝑐)) = 2) |
137 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) |
138 | 136, 137 | oveq12d 7434 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 ·e
(2↑𝑜))) |
139 | | 2re 12332 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
140 | 139 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈
ℝ) |
141 | 140, 125 | reexpcld 14176 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈
ℝ) |
142 | | rexmul 13298 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ ∧ (2↑𝑜) ∈ ℝ) → (2
·e (2↑𝑜)) = (2 · (2↑𝑜))) |
143 | 140, 141,
142 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2
·e (2↑𝑜)) = (2 · (2↑𝑜))) |
144 | 138, 143 | eqtrd 2766 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 · (2↑𝑜))) |
145 | 133, 125 | expp1d 14160 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑(𝑜 + 1)) = ((2↑𝑜) · 2)) |
146 | 135, 144,
145 | 3eqtr4d 2776 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2↑(𝑜 + 1))) |
147 | 129, 132,
146 | 3eqtrd 2770 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) =
(2↑(𝑜 +
1))) |
148 | 124, 128,
147 | rspcedvdw 3610 |
. . . . . . . . 9
⊢
(((((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ∃𝑚 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)) |
149 | 148, 110 | r19.29a 3152 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ∃𝑚 ∈ ℕ0
((lastS‘(𝑐 ++
〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)) |
150 | 122, 149 | jca 510 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) ∧ 𝑐 ≠ ∅) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚))) |
151 | 83, 150 | pm2.61dane 3019 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 <
(♯‘(𝑐 ++
〈“𝑔”〉))) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚))) |
152 | 151 | ex 411 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑐 ∈ ( < ChainField)) ∧
𝑔 ∈ Field) ∧
(𝑐 = ∅ ∨
(lastS‘𝑐) < 𝑔)) ∧ (0 <
(♯‘𝑐) →
((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) → (0 <
(♯‘(𝑐 ++
〈“𝑔”〉)) → ((lastS‘(𝑐 ++ 〈“𝑔”〉))/FldExt((𝑐 ++ 〈“𝑔”〉)‘0) ∧
∃𝑚 ∈
ℕ0 ((lastS‘(𝑐 ++ 〈“𝑔”〉))[:]((𝑐 ++ 〈“𝑔”〉)‘0)) = (2↑𝑚)))) |
153 | 11, 21, 35, 45, 46, 53, 152 | chnind 32883 |
. . . 4
⊢ (𝜑 → (0 <
(♯‘𝑇) →
((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))) |
154 | 1, 153 | mpd 15 |
. . 3
⊢ (𝜑 → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))) |
155 | 154 | simprd 494 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)) |
156 | | fldext2chn.2 |
. . . . 5
⊢ (𝜑 → (lastS‘𝑇) = 𝐹) |
157 | | fldext2chn.1 |
. . . . 5
⊢ (𝜑 → (𝑇‘0) = 𝑄) |
158 | 156, 157 | oveq12d 7434 |
. . . 4
⊢ (𝜑 → ((lastS‘𝑇)[:](𝑇‘0)) = (𝐹[:]𝑄)) |
159 | 158 | eqeq1d 2728 |
. . 3
⊢ (𝜑 → (((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ (𝐹[:]𝑄) = (2↑𝑛))) |
160 | 159 | rexbidv 3169 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0
((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0
(𝐹[:]𝑄) = (2↑𝑛))) |
161 | 155, 160 | mpbid 231 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)) |