Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldext2chn Structured version   Visualization version   GIF version

Theorem fldext2chn 33725
Description: In a non-empty chain 𝑇 of quadratic field extensions, the degree of the final extension is always a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldext2chn.e 𝐸 = (𝑊s 𝑒)
fldext2chn.f 𝐹 = (𝑊s 𝑓)
fldext2chn.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
fldext2chn.t (𝜑𝑇 ∈ ( < Chain(SubDRing‘𝑊)))
fldext2chn.w (𝜑𝑊 ∈ Field)
fldext2chn.1 (𝜑 → (𝑊s (𝑇‘0)) = 𝑄)
fldext2chn.2 (𝜑 → (𝑊s (lastS‘𝑇)) = 𝐿)
fldext2chn.3 (𝜑 → 0 < (♯‘𝑇))
Assertion
Ref Expression
fldext2chn (𝜑 → (𝐿/FldExt𝑄 ∧ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
Distinct variable groups:   𝑇,𝑛   𝑛,𝑊   𝑒,𝑊,𝑓   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝑄(𝑒,𝑓,𝑛)   < (𝑒,𝑓,𝑛)   𝑇(𝑒,𝑓)   𝐸(𝑒,𝑓,𝑛)   𝐹(𝑒,𝑓,𝑛)   𝐿(𝑒,𝑓,𝑛)

Proof of Theorem fldext2chn
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldext2chn.3 . . 3 (𝜑 → 0 < (♯‘𝑇))
2 fveq2 6861 . . . . . 6 (𝑑 = ∅ → (♯‘𝑑) = (♯‘∅))
32breq2d 5122 . . . . 5 (𝑑 = ∅ → (0 < (♯‘𝑑) ↔ 0 < (♯‘∅)))
4 fveq2 6861 . . . . . . . 8 (𝑑 = ∅ → (lastS‘𝑑) = (lastS‘∅))
54oveq2d 7406 . . . . . . 7 (𝑑 = ∅ → (𝑊s (lastS‘𝑑)) = (𝑊s (lastS‘∅)))
6 fveq1 6860 . . . . . . . 8 (𝑑 = ∅ → (𝑑‘0) = (∅‘0))
76oveq2d 7406 . . . . . . 7 (𝑑 = ∅ → (𝑊s (𝑑‘0)) = (𝑊s (∅‘0)))
85, 7breq12d 5123 . . . . . 6 (𝑑 = ∅ → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ↔ (𝑊s (lastS‘∅))/FldExt(𝑊s (∅‘0))))
95, 7oveq12d 7408 . . . . . . . 8 (𝑑 = ∅ → ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))))
109eqeq1d 2732 . . . . . . 7 (𝑑 = ∅ → (((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))) = (2↑𝑛)))
1110rexbidv 3158 . . . . . 6 (𝑑 = ∅ → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))) = (2↑𝑛)))
128, 11anbi12d 632 . . . . 5 (𝑑 = ∅ → (((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛)) ↔ ((𝑊s (lastS‘∅))/FldExt(𝑊s (∅‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))) = (2↑𝑛))))
133, 12imbi12d 344 . . . 4 (𝑑 = ∅ → ((0 < (♯‘𝑑) → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛))) ↔ (0 < (♯‘∅) → ((𝑊s (lastS‘∅))/FldExt(𝑊s (∅‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))) = (2↑𝑛)))))
14 fveq2 6861 . . . . . 6 (𝑑 = 𝑐 → (♯‘𝑑) = (♯‘𝑐))
1514breq2d 5122 . . . . 5 (𝑑 = 𝑐 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑐)))
16 fveq2 6861 . . . . . . . 8 (𝑑 = 𝑐 → (lastS‘𝑑) = (lastS‘𝑐))
1716oveq2d 7406 . . . . . . 7 (𝑑 = 𝑐 → (𝑊s (lastS‘𝑑)) = (𝑊s (lastS‘𝑐)))
18 fveq1 6860 . . . . . . . 8 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
1918oveq2d 7406 . . . . . . 7 (𝑑 = 𝑐 → (𝑊s (𝑑‘0)) = (𝑊s (𝑐‘0)))
2017, 19breq12d 5123 . . . . . 6 (𝑑 = 𝑐 → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ↔ (𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0))))
2117, 19oveq12d 7408 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))))
2221eqeq1d 2732 . . . . . . 7 (𝑑 = 𝑐 → (((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))
2322rexbidv 3158 . . . . . 6 (𝑑 = 𝑐 → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))
2420, 23anbi12d 632 . . . . 5 (𝑑 = 𝑐 → (((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛)) ↔ ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛))))
2515, 24imbi12d 344 . . . 4 (𝑑 = 𝑐 → ((0 < (♯‘𝑑) → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛))) ↔ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))))
26 fveq2 6861 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (♯‘𝑑) = (♯‘(𝑐 ++ ⟨“𝑔”⟩)))
2726breq2d 5122 . . . . 5 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (0 < (♯‘𝑑) ↔ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))))
28 fveq2 6861 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (lastS‘𝑑) = (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))
2928oveq2d 7406 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑊s (lastS‘𝑑)) = (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩))))
30 fveq1 6860 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑑‘0) = ((𝑐 ++ ⟨“𝑔”⟩)‘0))
3130oveq2d 7406 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑊s (𝑑‘0)) = (𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)))
3229, 31breq12d 5123 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ↔ (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))))
3329, 31oveq12d 7408 . . . . . . . . 9 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))))
3433eqeq1d 2732 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑛)))
3534rexbidv 3158 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑛)))
36 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
3736eqeq2d 2741 . . . . . . . 8 (𝑛 = 𝑚 → (((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))
3837cbvrexvw 3217 . . . . . . 7 (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))
3935, 38bitrdi 287 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))
4032, 39anbi12d 632 . . . . 5 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛)) ↔ ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))))
4127, 40imbi12d 344 . . . 4 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((0 < (♯‘𝑑) → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛))) ↔ (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))))
42 fveq2 6861 . . . . . 6 (𝑑 = 𝑇 → (♯‘𝑑) = (♯‘𝑇))
4342breq2d 5122 . . . . 5 (𝑑 = 𝑇 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑇)))
44 fveq2 6861 . . . . . . . 8 (𝑑 = 𝑇 → (lastS‘𝑑) = (lastS‘𝑇))
4544oveq2d 7406 . . . . . . 7 (𝑑 = 𝑇 → (𝑊s (lastS‘𝑑)) = (𝑊s (lastS‘𝑇)))
46 fveq1 6860 . . . . . . . 8 (𝑑 = 𝑇 → (𝑑‘0) = (𝑇‘0))
4746oveq2d 7406 . . . . . . 7 (𝑑 = 𝑇 → (𝑊s (𝑑‘0)) = (𝑊s (𝑇‘0)))
4845, 47breq12d 5123 . . . . . 6 (𝑑 = 𝑇 → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ↔ (𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0))))
4945, 47oveq12d 7408 . . . . . . . 8 (𝑑 = 𝑇 → ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))))
5049eqeq1d 2732 . . . . . . 7 (𝑑 = 𝑇 → (((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛)))
5150rexbidv 3158 . . . . . 6 (𝑑 = 𝑇 → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛)))
5248, 51anbi12d 632 . . . . 5 (𝑑 = 𝑇 → (((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛)) ↔ ((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛))))
5343, 52imbi12d 344 . . . 4 (𝑑 = 𝑇 → ((0 < (♯‘𝑑) → ((𝑊s (lastS‘𝑑))/FldExt(𝑊s (𝑑‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑑))[:](𝑊s (𝑑‘0))) = (2↑𝑛))) ↔ (0 < (♯‘𝑇) → ((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛)))))
54 fldext2chn.t . . . 4 (𝜑𝑇 ∈ ( < Chain(SubDRing‘𝑊)))
55 0re 11183 . . . . . . . 8 0 ∈ ℝ
5655ltnri 11290 . . . . . . 7 ¬ 0 < 0
5756a1i 11 . . . . . 6 (𝜑 → ¬ 0 < 0)
58 hash0 14339 . . . . . . 7 (♯‘∅) = 0
5958breq2i 5118 . . . . . 6 (0 < (♯‘∅) ↔ 0 < 0)
6057, 59sylnibr 329 . . . . 5 (𝜑 → ¬ 0 < (♯‘∅))
6160pm2.21d 121 . . . 4 (𝜑 → (0 < (♯‘∅) → ((𝑊s (lastS‘∅))/FldExt(𝑊s (∅‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘∅))[:](𝑊s (∅‘0))) = (2↑𝑛))))
62 fldext2chn.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Field)
6362ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑊 ∈ Field)
64 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔 ∈ (SubDRing‘𝑊))
65 fldsdrgfld 20714 . . . . . . . . . 10 ((𝑊 ∈ Field ∧ 𝑔 ∈ (SubDRing‘𝑊)) → (𝑊s 𝑔) ∈ Field)
6663, 64, 65syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑊s 𝑔) ∈ Field)
67 fldextid 33662 . . . . . . . . 9 ((𝑊s 𝑔) ∈ Field → (𝑊s 𝑔)/FldExt(𝑊s 𝑔))
6866, 67syl 17 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑊s 𝑔)/FldExt(𝑊s 𝑔))
69 simp-5r 785 . . . . . . . . . . . 12 ((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ ( < Chain(SubDRing‘𝑊)))
7069chnwrd 32940 . . . . . . . . . . 11 ((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ Word (SubDRing‘𝑊))
7170adantr 480 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑐 ∈ Word (SubDRing‘𝑊))
72 lswccats1 14606 . . . . . . . . . 10 ((𝑐 ∈ Word (SubDRing‘𝑊) ∧ 𝑔 ∈ (SubDRing‘𝑊)) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
7371, 64, 72syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
7473oveq2d 7406 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩))) = (𝑊s 𝑔))
75 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑐 = ∅)
7675oveq1d 7405 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = (∅ ++ ⟨“𝑔”⟩))
77 s0s1 14895 . . . . . . . . . . . 12 ⟨“𝑔”⟩ = (∅ ++ ⟨“𝑔”⟩)
7876, 77eqtr4di 2783 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = ⟨“𝑔”⟩)
7978fveq1d 6863 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (⟨“𝑔”⟩‘0))
80 s1fv 14582 . . . . . . . . . . 11 (𝑔 ∈ (SubDRing‘𝑊) → (⟨“𝑔”⟩‘0) = 𝑔)
8164, 80syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (⟨“𝑔”⟩‘0) = 𝑔)
8279, 81eqtrd 2765 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = 𝑔)
8382oveq2d 7406 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑊s 𝑔))
8468, 74, 833brtr4d 5142 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)))
85 oveq2 7398 . . . . . . . . . 10 (𝑚 = 0 → (2↑𝑚) = (2↑0))
86 2cn 12268 . . . . . . . . . . 11 2 ∈ ℂ
87 exp0 14037 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑0) = 1)
8886, 87ax-mp 5 . . . . . . . . . 10 (2↑0) = 1
8985, 88eqtrdi 2781 . . . . . . . . 9 (𝑚 = 0 → (2↑𝑚) = 1)
9089eqeq2d 2741 . . . . . . . 8 (𝑚 = 0 → (((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚) ↔ ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = 1))
91 0nn0 12464 . . . . . . . . 9 0 ∈ ℕ0
9291a1i 11 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 0 ∈ ℕ0)
9374, 83oveq12d 7408 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = ((𝑊s 𝑔)[:](𝑊s 𝑔)))
94 extdgid 33663 . . . . . . . . . 10 ((𝑊s 𝑔) ∈ Field → ((𝑊s 𝑔)[:](𝑊s 𝑔)) = 1)
9566, 94syl 17 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑊s 𝑔)[:](𝑊s 𝑔)) = 1)
9693, 95eqtrd 2765 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = 1)
9790, 92, 96rspcedvdw 3594 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))
9884, 97jca 511 . . . . . 6 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))
99 simp-6r 787 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔))
100 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 𝑐 ≠ ∅)
101100neneqd 2931 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ¬ 𝑐 = ∅)
10299, 101orcnd 878 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (lastS‘𝑐) < 𝑔)
10370ad3antrrr 730 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 𝑐 ∈ Word (SubDRing‘𝑊))
104 lswcl 14540 . . . . . . . . . . . . . 14 ((𝑐 ∈ Word (SubDRing‘𝑊) ∧ 𝑐 ≠ ∅) → (lastS‘𝑐) ∈ (SubDRing‘𝑊))
105103, 100, 104syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (lastS‘𝑐) ∈ (SubDRing‘𝑊))
106 simp-7r 789 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 𝑔 ∈ (SubDRing‘𝑊))
107 fldext2chn.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑊s 𝑒)
108 fldext2chn.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑊s 𝑓)
109107, 108breq12i 5119 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 ↔ (𝑊s 𝑒)/FldExt(𝑊s 𝑓))
110107, 108oveq12i 7402 . . . . . . . . . . . . . . . . . 18 (𝐸[:]𝐹) = ((𝑊s 𝑒)[:](𝑊s 𝑓))
111110eqeq1i 2735 . . . . . . . . . . . . . . . . 17 ((𝐸[:]𝐹) = 2 ↔ ((𝑊s 𝑒)[:](𝑊s 𝑓)) = 2)
112109, 111anbi12i 628 . . . . . . . . . . . . . . . 16 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((𝑊s 𝑒)/FldExt(𝑊s 𝑓) ∧ ((𝑊s 𝑒)[:](𝑊s 𝑓)) = 2))
113 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑔 → (𝑊s 𝑒) = (𝑊s 𝑔))
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑊s 𝑒) = (𝑊s 𝑔))
115 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (lastS‘𝑐) → (𝑊s 𝑓) = (𝑊s (lastS‘𝑐)))
116115adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑊s 𝑓) = (𝑊s (lastS‘𝑐)))
117114, 116breq12d 5123 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑊s 𝑒)/FldExt(𝑊s 𝑓) ↔ (𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐))))
118114, 116oveq12d 7408 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑊s 𝑒)[:](𝑊s 𝑓)) = ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))))
119118eqeq1d 2732 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (((𝑊s 𝑒)[:](𝑊s 𝑓)) = 2 ↔ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2))
120117, 119anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (((𝑊s 𝑒)/FldExt(𝑊s 𝑓) ∧ ((𝑊s 𝑒)[:](𝑊s 𝑓)) = 2) ↔ ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)))
121112, 120bitrid 283 . . . . . . . . . . . . . . 15 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)))
122121ancoms 458 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑐) ∧ 𝑒 = 𝑔) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)))
123 fldext2chn.l . . . . . . . . . . . . . 14 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
124122, 123brabga 5497 . . . . . . . . . . . . 13 (((lastS‘𝑐) ∈ (SubDRing‘𝑊) ∧ 𝑔 ∈ (SubDRing‘𝑊)) → ((lastS‘𝑐) < 𝑔 ↔ ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)))
125105, 106, 124syl2anc 584 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((lastS‘𝑐) < 𝑔 ↔ ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)))
126102, 125mpbid 232 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2))
127126simpld 494 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)))
128 hashgt0 14360 . . . . . . . . . . . . . 14 ((𝑐 ∈ ( < Chain(SubDRing‘𝑊)) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
12969, 128sylan 580 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
130 simpllr 775 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛))))
131129, 130mpd 15 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))
132131simprd 495 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛))
133 oveq2 7398 . . . . . . . . . . . . 13 (𝑛 = 𝑜 → (2↑𝑛) = (2↑𝑜))
134133eqeq2d 2741 . . . . . . . . . . . 12 (𝑛 = 𝑜 → (((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛) ↔ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)))
135134cbvrexvw 3217 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛) ↔ ∃𝑜 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜))
136132, 135sylib 218 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑜 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜))
137127, 136r19.29a 3142 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)))
138131simpld 494 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)))
139 fldexttr 33661 . . . . . . . . 9 (((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ (𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0))) → (𝑊s 𝑔)/FldExt(𝑊s (𝑐‘0)))
140137, 138, 139syl2anc 584 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s 𝑔)/FldExt(𝑊s (𝑐‘0)))
141103, 106, 72syl2anc 584 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
142141oveq2d 7406 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩))) = (𝑊s 𝑔))
143142, 136r19.29a 3142 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩))) = (𝑊s 𝑔))
144106s1cld 14575 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ⟨“𝑔”⟩ ∈ Word (SubDRing‘𝑊))
145129ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 0 < (♯‘𝑐))
146 ccatfv0 14555 . . . . . . . . . . 11 ((𝑐 ∈ Word (SubDRing‘𝑊) ∧ ⟨“𝑔”⟩ ∈ Word (SubDRing‘𝑊) ∧ 0 < (♯‘𝑐)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
147103, 144, 145, 146syl3anc 1373 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
148147oveq2d 7406 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑊s (𝑐‘0)))
149148, 136r19.29a 3142 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑊s (𝑐‘0)))
150140, 143, 1493brtr4d 5142 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)))
151 oveq2 7398 . . . . . . . . . 10 (𝑚 = (𝑜 + 1) → (2↑𝑚) = (2↑(𝑜 + 1)))
152151eqeq2d 2741 . . . . . . . . 9 (𝑚 = (𝑜 + 1) → (((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚) ↔ ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑(𝑜 + 1))))
153 simplr 768 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 𝑜 ∈ ℕ0)
154 1nn0 12465 . . . . . . . . . . 11 1 ∈ ℕ0
155154a1i 11 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 1 ∈ ℕ0)
156153, 155nn0addcld 12514 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑜 + 1) ∈ ℕ0)
157142, 148oveq12d 7408 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = ((𝑊s 𝑔)[:](𝑊s (𝑐‘0))))
158138ad2antrr 726 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)))
159 extdgmul 33666 . . . . . . . . . . 11 (((𝑊s 𝑔)/FldExt(𝑊s (lastS‘𝑐)) ∧ (𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0))) → ((𝑊s 𝑔)[:](𝑊s (𝑐‘0))) = (((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) ·e ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0)))))
160127, 158, 159syl2anc 584 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s 𝑔)[:](𝑊s (𝑐‘0))) = (((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) ·e ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0)))))
16186a1i 11 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 2 ∈ ℂ)
162161, 153expcld 14118 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (2↑𝑜) ∈ ℂ)
163161, 162mulcomd 11202 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (2 · (2↑𝑜)) = ((2↑𝑜) · 2))
164126simprd 495 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) = 2)
165 simpr 484 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜))
166164, 165oveq12d 7408 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) ·e ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0)))) = (2 ·e (2↑𝑜)))
167 2re 12267 . . . . . . . . . . . . . 14 2 ∈ ℝ
168167a1i 11 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → 2 ∈ ℝ)
169168, 153reexpcld 14135 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (2↑𝑜) ∈ ℝ)
170 rexmul 13238 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2↑𝑜) ∈ ℝ) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
171168, 169, 170syl2anc 584 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
172166, 171eqtrd 2765 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) ·e ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0)))) = (2 · (2↑𝑜)))
173161, 153expp1d 14119 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (2↑(𝑜 + 1)) = ((2↑𝑜) · 2))
174163, 172, 1733eqtr4d 2775 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → (((𝑊s 𝑔)[:](𝑊s (lastS‘𝑐))) ·e ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0)))) = (2↑(𝑜 + 1)))
175157, 160, 1743eqtrd 2769 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑(𝑜 + 1)))
176152, 156, 175rspcedvdw 3594 . . . . . . . 8 (((((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑜)) → ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))
177176, 136r19.29a 3142 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))
178150, 177jca 511 . . . . . 6 (((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))
17998, 178pm2.61dane 3013 . . . . 5 ((((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚)))
180179ex 412 . . . 4 (((((𝜑𝑐 ∈ ( < Chain(SubDRing‘𝑊))) ∧ 𝑔 ∈ (SubDRing‘𝑊)) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((𝑊s (lastS‘𝑐))/FldExt(𝑊s (𝑐‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑐))[:](𝑊s (𝑐‘0))) = (2↑𝑛)))) → (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))/FldExt(𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0)) ∧ ∃𝑚 ∈ ℕ0 ((𝑊s (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))[:](𝑊s ((𝑐 ++ ⟨“𝑔”⟩)‘0))) = (2↑𝑚))))
18113, 25, 41, 53, 54, 61, 180chnind 32944 . . 3 (𝜑 → (0 < (♯‘𝑇) → ((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛))))
1821, 181mpd 15 . 2 (𝜑 → ((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛)))
183 fldext2chn.2 . . . 4 (𝜑 → (𝑊s (lastS‘𝑇)) = 𝐿)
184 fldext2chn.1 . . . 4 (𝜑 → (𝑊s (𝑇‘0)) = 𝑄)
185183, 184breq12d 5123 . . 3 (𝜑 → ((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ↔ 𝐿/FldExt𝑄))
186183, 184oveq12d 7408 . . . . 5 (𝜑 → ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (𝐿[:]𝑄))
187186eqeq1d 2732 . . . 4 (𝜑 → (((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛) ↔ (𝐿[:]𝑄) = (2↑𝑛)))
188187rexbidv 3158 . . 3 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
189185, 188anbi12d 632 . 2 (𝜑 → (((𝑊s (lastS‘𝑇))/FldExt(𝑊s (𝑇‘0)) ∧ ∃𝑛 ∈ ℕ0 ((𝑊s (lastS‘𝑇))[:](𝑊s (𝑇‘0))) = (2↑𝑛)) ↔ (𝐿/FldExt𝑄 ∧ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))))
190182, 189mpbid 232 1 (𝜑 → (𝐿/FldExt𝑄 ∧ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  c0 4299   class class class wbr 5110  {copab 5172  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  2c2 12248  0cn0 12449   ·e cxmu 13078  cexp 14033  chash 14302  Word cword 14485  lastSclsw 14534   ++ cconcat 14542  ⟨“cs1 14567  s cress 17207  Fieldcfield 20646  SubDRingcsdrg 20702  Chaincchn 32937  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xmul 13081  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-chn 32938  df-dim 33602  df-fldext 33644  df-extdg 33645
This theorem is referenced by:  constrext2chnlem  33747
  Copyright terms: Public domain W3C validator