Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldext2chn Structured version   Visualization version   GIF version

Theorem fldext2chn 33601
Description: In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
fldext2chn.l < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
fldext2chn.t (𝜑𝑇 ∈ ( < ChainField))
fldext2chn.1 (𝜑 → (𝑇‘0) = 𝑄)
fldext2chn.2 (𝜑 → (lastS‘𝑇) = 𝐹)
fldext2chn.3 (𝜑 → 0 < (♯‘𝑇))
Assertion
Ref Expression
fldext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝑇,𝑛   𝜑,𝑛   𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝑄(𝑒,𝑓,𝑛)   < (𝑒,𝑓,𝑛)   𝑇(𝑒,𝑓)   𝐹(𝑒,𝑓,𝑛)

Proof of Theorem fldext2chn
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldext2chn.3 . . . 4 (𝜑 → 0 < (♯‘𝑇))
2 fveq2 6893 . . . . . . 7 (𝑑 = ∅ → (♯‘𝑑) = (♯‘∅))
32breq2d 5157 . . . . . 6 (𝑑 = ∅ → (0 < (♯‘𝑑) ↔ 0 < (♯‘∅)))
4 fveq2 6893 . . . . . . . 8 (𝑑 = ∅ → (lastS‘𝑑) = (lastS‘∅))
5 fveq1 6892 . . . . . . . 8 (𝑑 = ∅ → (𝑑‘0) = (∅‘0))
64, 5breq12d 5158 . . . . . . 7 (𝑑 = ∅ → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘∅)/FldExt(∅‘0)))
74, 5oveq12d 7434 . . . . . . . . 9 (𝑑 = ∅ → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘∅)[:](∅‘0)))
87eqeq1d 2728 . . . . . . . 8 (𝑑 = ∅ → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
98rexbidv 3169 . . . . . . 7 (𝑑 = ∅ → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))
106, 9anbi12d 630 . . . . . 6 (𝑑 = ∅ → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
113, 10imbi12d 343 . . . . 5 (𝑑 = ∅ → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛)))))
12 fveq2 6893 . . . . . . 7 (𝑑 = 𝑐 → (♯‘𝑑) = (♯‘𝑐))
1312breq2d 5157 . . . . . 6 (𝑑 = 𝑐 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑐)))
14 fveq2 6893 . . . . . . . 8 (𝑑 = 𝑐 → (lastS‘𝑑) = (lastS‘𝑐))
15 fveq1 6892 . . . . . . . 8 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
1614, 15breq12d 5158 . . . . . . 7 (𝑑 = 𝑐 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑐)/FldExt(𝑐‘0)))
1714, 15oveq12d 7434 . . . . . . . . 9 (𝑑 = 𝑐 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑐)[:](𝑐‘0)))
1817eqeq1d 2728 . . . . . . . 8 (𝑑 = 𝑐 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
1918rexbidv 3169 . . . . . . 7 (𝑑 = 𝑐 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
2016, 19anbi12d 630 . . . . . 6 (𝑑 = 𝑐 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
2113, 20imbi12d 343 . . . . 5 (𝑑 = 𝑐 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))))
22 fveq2 6893 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (♯‘𝑑) = (♯‘(𝑐 ++ ⟨“𝑔”⟩)))
2322breq2d 5157 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (0 < (♯‘𝑑) ↔ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))))
24 fveq2 6893 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (lastS‘𝑑) = (lastS‘(𝑐 ++ ⟨“𝑔”⟩)))
25 fveq1 6892 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (𝑑‘0) = ((𝑐 ++ ⟨“𝑔”⟩)‘0))
2624, 25breq12d 5158 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2724, 25oveq12d 7434 . . . . . . . . . 10 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)))
2827eqeq1d 2728 . . . . . . . . 9 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
2928rexbidv 3169 . . . . . . . 8 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛)))
30 oveq2 7424 . . . . . . . . . 10 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
3130eqeq2d 2737 . . . . . . . . 9 (𝑛 = 𝑚 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3231cbvrexvw 3226 . . . . . . . 8 (∃𝑛 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
3329, 32bitrdi 286 . . . . . . 7 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
3426, 33anbi12d 630 . . . . . 6 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
3523, 34imbi12d 343 . . . . 5 (𝑑 = (𝑐 ++ ⟨“𝑔”⟩) → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))))
36 fveq2 6893 . . . . . . 7 (𝑑 = 𝑇 → (♯‘𝑑) = (♯‘𝑇))
3736breq2d 5157 . . . . . 6 (𝑑 = 𝑇 → (0 < (♯‘𝑑) ↔ 0 < (♯‘𝑇)))
38 fveq2 6893 . . . . . . . 8 (𝑑 = 𝑇 → (lastS‘𝑑) = (lastS‘𝑇))
39 fveq1 6892 . . . . . . . 8 (𝑑 = 𝑇 → (𝑑‘0) = (𝑇‘0))
4038, 39breq12d 5158 . . . . . . 7 (𝑑 = 𝑇 → ((lastS‘𝑑)/FldExt(𝑑‘0) ↔ (lastS‘𝑇)/FldExt(𝑇‘0)))
4138, 39oveq12d 7434 . . . . . . . . 9 (𝑑 = 𝑇 → ((lastS‘𝑑)[:](𝑑‘0)) = ((lastS‘𝑇)[:](𝑇‘0)))
4241eqeq1d 2728 . . . . . . . 8 (𝑑 = 𝑇 → (((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4342rexbidv 3169 . . . . . . 7 (𝑑 = 𝑇 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
4440, 43anbi12d 630 . . . . . 6 (𝑑 = 𝑇 → (((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛)) ↔ ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
4537, 44imbi12d 343 . . . . 5 (𝑑 = 𝑇 → ((0 < (♯‘𝑑) → ((lastS‘𝑑)/FldExt(𝑑‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑑)[:](𝑑‘0)) = (2↑𝑛))) ↔ (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))))
46 fldext2chn.t . . . . 5 (𝜑𝑇 ∈ ( < ChainField))
47 0re 11257 . . . . . . . . 9 0 ∈ ℝ
4847ltnri 11364 . . . . . . . 8 ¬ 0 < 0
4948a1i 11 . . . . . . 7 (𝜑 → ¬ 0 < 0)
50 hash0 14379 . . . . . . . 8 (♯‘∅) = 0
5150breq2i 5153 . . . . . . 7 (0 < (♯‘∅) ↔ 0 < 0)
5249, 51sylnibr 328 . . . . . 6 (𝜑 → ¬ 0 < (♯‘∅))
5352pm2.21d 121 . . . . 5 (𝜑 → (0 < (♯‘∅) → ((lastS‘∅)/FldExt(∅‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘∅)[:](∅‘0)) = (2↑𝑛))))
54 simp-5r 784 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔 ∈ Field)
55 fldextid 33554 . . . . . . . . . 10 (𝑔 ∈ Field → 𝑔/FldExt𝑔)
5654, 55syl 17 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑔/FldExt𝑔)
57 simp-5r 784 . . . . . . . . . . 11 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ ( < ChainField))
5857chnwrd 32880 . . . . . . . . . 10 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → 𝑐 ∈ Word Field)
59 lswccats1 14637 . . . . . . . . . 10 ((𝑐 ∈ Word Field ∧ 𝑔 ∈ Field) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
6058, 54, 59syl2an2r 683 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
61 simpr 483 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 𝑐 = ∅)
6261oveq1d 7431 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = (∅ ++ ⟨“𝑔”⟩))
63 s0s1 14926 . . . . . . . . . . . 12 ⟨“𝑔”⟩ = (∅ ++ ⟨“𝑔”⟩)
6462, 63eqtr4di 2784 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑐 ++ ⟨“𝑔”⟩) = ⟨“𝑔”⟩)
6564fveq1d 6895 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (⟨“𝑔”⟩‘0))
66 s1fv 14613 . . . . . . . . . . 11 (𝑔 ∈ Field → (⟨“𝑔”⟩‘0) = 𝑔)
6754, 66syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (⟨“𝑔”⟩‘0) = 𝑔)
6865, 67eqtrd 2766 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = 𝑔)
6956, 60, 683brtr4d 5177 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
70 oveq2 7424 . . . . . . . . . . 11 (𝑚 = 0 → (2↑𝑚) = (2↑0))
71 2cn 12333 . . . . . . . . . . . 12 2 ∈ ℂ
72 exp0 14079 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
7371, 72ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
7470, 73eqtrdi 2782 . . . . . . . . . 10 (𝑚 = 0 → (2↑𝑚) = 1)
7574eqeq2d 2737 . . . . . . . . 9 (𝑚 = 0 → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1))
76 0nn0 12533 . . . . . . . . . 10 0 ∈ ℕ0
7776a1i 11 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → 0 ∈ ℕ0)
7860, 68oveq12d 7434 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:]𝑔))
79 extdgid 33555 . . . . . . . . . . 11 (𝑔 ∈ Field → (𝑔[:]𝑔) = 1)
8054, 79syl 17 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → (𝑔[:]𝑔) = 1)
8178, 80eqtrd 2766 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = 1)
8275, 77, 81rspcedvdw 3610 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
8369, 82jca 510 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 = ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
84 simp-6r 786 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔))
85 simpllr 774 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ≠ ∅)
8685neneqd 2935 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ¬ 𝑐 = ∅)
8784, 86orcnd 876 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) < 𝑔)
8858ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑐 ∈ Word Field)
89 lswcl 14571 . . . . . . . . . . . . . . 15 ((𝑐 ∈ Word Field ∧ 𝑐 ≠ ∅) → (lastS‘𝑐) ∈ Field)
9088, 85, 89syl2anc 582 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐) ∈ Field)
91 simp-7r 788 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔 ∈ Field)
92 breq12 5150 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒/FldExt𝑓𝑔/FldExt(lastS‘𝑐)))
93 oveq12 7425 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → (𝑒[:]𝑓) = (𝑔[:](lastS‘𝑐)))
9493eqeq1d 2728 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒[:]𝑓) = 2 ↔ (𝑔[:](lastS‘𝑐)) = 2))
9592, 94anbi12d 630 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝑔𝑓 = (lastS‘𝑐)) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9695ancoms 457 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑐) ∧ 𝑒 = 𝑔) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2) ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
97 fldext2chn.l . . . . . . . . . . . . . . 15 < = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}
9896, 97brabga 5532 . . . . . . . . . . . . . 14 (((lastS‘𝑐) ∈ Field ∧ 𝑔 ∈ Field) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
9990, 91, 98syl2anc 582 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐) < 𝑔 ↔ (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2)))
10087, 99mpbid 231 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔/FldExt(lastS‘𝑐) ∧ (𝑔[:](lastS‘𝑐)) = 2))
101100simpld 493 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑔/FldExt(lastS‘𝑐))
102 hashgt0 14400 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ( < ChainField) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
10357, 102sylan 578 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 0 < (♯‘𝑐))
104 simpllr 774 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))))
105103, 104mpd 15 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))
106105simprd 494 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛))
107 oveq2 7424 . . . . . . . . . . . . . 14 (𝑛 = 𝑜 → (2↑𝑛) = (2↑𝑜))
108107eqeq2d 2737 . . . . . . . . . . . . 13 (𝑛 = 𝑜 → (((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)))
109108cbvrexvw 3226 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛) ↔ ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
110106, 109sylib 217 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑜 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
111101, 110r19.29a 3152 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(lastS‘𝑐))
112105simpld 493 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘𝑐)/FldExt(𝑐‘0))
113 fldexttr 33553 . . . . . . . . . 10 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → 𝑔/FldExt(𝑐‘0))
114111, 112, 113syl2anc 582 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → 𝑔/FldExt(𝑐‘0))
11588, 91, 59syl2anc 582 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
116115, 110r19.29a 3152 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩)) = 𝑔)
11791s1cld 14606 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ⟨“𝑔”⟩ ∈ Word Field)
118103ad2antrr 724 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 0 < (♯‘𝑐))
119 ccatfv0 14586 . . . . . . . . . . 11 ((𝑐 ∈ Word Field ∧ ⟨“𝑔”⟩ ∈ Word Field ∧ 0 < (♯‘𝑐)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
12088, 117, 118, 119syl3anc 1368 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
121120, 110r19.29a 3152 . . . . . . . . 9 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((𝑐 ++ ⟨“𝑔”⟩)‘0) = (𝑐‘0))
122114, 116, 1213brtr4d 5177 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → (lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0))
123 oveq2 7424 . . . . . . . . . . 11 (𝑚 = (𝑜 + 1) → (2↑𝑚) = (2↑(𝑜 + 1)))
124123eqeq2d 2737 . . . . . . . . . 10 (𝑚 = (𝑜 + 1) → (((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚) ↔ ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1))))
125 simplr 767 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 𝑜 ∈ ℕ0)
126 1nn0 12534 . . . . . . . . . . . 12 1 ∈ ℕ0
127126a1i 11 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 1 ∈ ℕ0)
128125, 127nn0addcld 12582 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑜 + 1) ∈ ℕ0)
129115, 120oveq12d 7434 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (𝑔[:](𝑐‘0)))
130112ad2antrr 724 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (lastS‘𝑐)/FldExt(𝑐‘0))
131 extdgmul 33556 . . . . . . . . . . . 12 ((𝑔/FldExt(lastS‘𝑐) ∧ (lastS‘𝑐)/FldExt(𝑐‘0)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
132101, 130, 131syl2anc 582 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](𝑐‘0)) = ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))))
133 2cnd 12336 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℂ)
134133, 125expcld 14159 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℂ)
135133, 134mulcomd 11276 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 · (2↑𝑜)) = ((2↑𝑜) · 2))
136100simprd 494 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (𝑔[:](lastS‘𝑐)) = 2)
137 simpr 483 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜))
138136, 137oveq12d 7434 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 ·e (2↑𝑜)))
139 2re 12332 . . . . . . . . . . . . . . 15 2 ∈ ℝ
140139a1i 11 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → 2 ∈ ℝ)
141140, 125reexpcld 14176 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑𝑜) ∈ ℝ)
142 rexmul 13298 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (2↑𝑜) ∈ ℝ) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
143140, 141, 142syl2anc 582 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2 ·e (2↑𝑜)) = (2 · (2↑𝑜)))
144138, 143eqtrd 2766 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2 · (2↑𝑜)))
145133, 125expp1d 14160 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → (2↑(𝑜 + 1)) = ((2↑𝑜) · 2))
146135, 144, 1453eqtr4d 2776 . . . . . . . . . . 11 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((𝑔[:](lastS‘𝑐)) ·e ((lastS‘𝑐)[:](𝑐‘0))) = (2↑(𝑜 + 1)))
147129, 132, 1463eqtrd 2770 . . . . . . . . . 10 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑(𝑜 + 1)))
148124, 128, 147rspcedvdw 3610 . . . . . . . . 9 (((((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) ∧ 𝑜 ∈ ℕ0) ∧ ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑜)) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
149148, 110r19.29a 3152 . . . . . . . 8 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))
150122, 149jca 510 . . . . . . 7 (((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) ∧ 𝑐 ≠ ∅) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
15183, 150pm2.61dane 3019 . . . . . 6 ((((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) ∧ 0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩))) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚)))
152151ex 411 . . . . 5 (((((𝜑𝑐 ∈ ( < ChainField)) ∧ 𝑔 ∈ Field) ∧ (𝑐 = ∅ ∨ (lastS‘𝑐) < 𝑔)) ∧ (0 < (♯‘𝑐) → ((lastS‘𝑐)/FldExt(𝑐‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑐)[:](𝑐‘0)) = (2↑𝑛)))) → (0 < (♯‘(𝑐 ++ ⟨“𝑔”⟩)) → ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))/FldExt((𝑐 ++ ⟨“𝑔”⟩)‘0) ∧ ∃𝑚 ∈ ℕ0 ((lastS‘(𝑐 ++ ⟨“𝑔”⟩))[:]((𝑐 ++ ⟨“𝑔”⟩)‘0)) = (2↑𝑚))))
15311, 21, 35, 45, 46, 53, 152chnind 32883 . . . 4 (𝜑 → (0 < (♯‘𝑇) → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))))
1541, 153mpd 15 . . 3 (𝜑 → ((lastS‘𝑇)/FldExt(𝑇‘0) ∧ ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛)))
155154simprd 494 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛))
156 fldext2chn.2 . . . . 5 (𝜑 → (lastS‘𝑇) = 𝐹)
157 fldext2chn.1 . . . . 5 (𝜑 → (𝑇‘0) = 𝑄)
158156, 157oveq12d 7434 . . . 4 (𝜑 → ((lastS‘𝑇)[:](𝑇‘0)) = (𝐹[:]𝑄))
159158eqeq1d 2728 . . 3 (𝜑 → (((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ (𝐹[:]𝑄) = (2↑𝑛)))
160159rexbidv 3169 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((lastS‘𝑇)[:](𝑇‘0)) = (2↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)))
161155, 160mpbid 231 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930  wrex 3060  c0 4322   class class class wbr 5145  {copab 5207  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154   < clt 11289  2c2 12313  0cn0 12518   ·e cxmu 13139  cexp 14075  chash 14342  Word cword 14517  lastSclsw 14565   ++ cconcat 14573  ⟨“cs1 14598  Fieldcfield 20704  Chaincchn 32877  /FldExtcfldext 33533  [:]cextdg 33536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-reg 9628  ax-inf2 9677  ax-ac2 10497  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-rpss 7726  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-r1 9800  df-rank 9801  df-dju 9937  df-card 9975  df-acn 9978  df-ac 10152  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-xnn0 12591  df-z 12605  df-dec 12724  df-uz 12869  df-rp 13023  df-xmul 13142  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-hash 14343  df-word 14518  df-lsw 14566  df-concat 14574  df-s1 14599  df-substr 14644  df-pfx 14674  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ocomp 17282  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-mri 17596  df-acs 17597  df-proset 18315  df-drs 18316  df-poset 18333  df-ipo 18548  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-nzr 20491  df-subrng 20524  df-subrg 20549  df-drng 20705  df-field 20706  df-lmod 20834  df-lss 20905  df-lsp 20945  df-lmhm 20996  df-lbs 21049  df-lvec 21077  df-sra 21147  df-rgmod 21148  df-lidl 21193  df-rsp 21194  df-dsmm 21726  df-frlm 21741  df-uvc 21777  df-lindf 21800  df-linds 21801  df-chn 32878  df-dim 33500  df-fldext 33537  df-extdg 33538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator