Step | Hyp | Ref
| Expression |
1 | | fveq2 6893 |
. . 3
⊢ (𝑖 = 𝐼 → (𝐶‘𝑖) = (𝐶‘𝐼)) |
2 | 1 | breq1d 5155 |
. 2
⊢ (𝑖 = 𝐼 → ((𝐶‘𝑖) < (lastS‘𝐶) ↔ (𝐶‘𝐼) < (lastS‘𝐶))) |
3 | | fveq2 6893 |
. . . . . 6
⊢ (𝑐 = ∅ →
(♯‘𝑐) =
(♯‘∅)) |
4 | 3 | oveq1d 7431 |
. . . . 5
⊢ (𝑐 = ∅ →
((♯‘𝑐) −
1) = ((♯‘∅) − 1)) |
5 | 4 | oveq2d 7432 |
. . . 4
⊢ (𝑐 = ∅ →
(0..^((♯‘𝑐)
− 1)) = (0..^((♯‘∅) − 1))) |
6 | | fveq1 6892 |
. . . . 5
⊢ (𝑐 = ∅ → (𝑐‘𝑖) = (∅‘𝑖)) |
7 | | fveq2 6893 |
. . . . 5
⊢ (𝑐 = ∅ →
(lastS‘𝑐) =
(lastS‘∅)) |
8 | 6, 7 | breq12d 5158 |
. . . 4
⊢ (𝑐 = ∅ → ((𝑐‘𝑖) < (lastS‘𝑐) ↔ (∅‘𝑖) <
(lastS‘∅))) |
9 | 5, 8 | raleqbidv 3330 |
. . 3
⊢ (𝑐 = ∅ → (∀𝑖 ∈
(0..^((♯‘𝑐)
− 1))(𝑐‘𝑖) < (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^((♯‘∅) − 1))(∅‘𝑖) <
(lastS‘∅))) |
10 | | fveq2 6893 |
. . . . . 6
⊢ (𝑐 = 𝑑 → (♯‘𝑐) = (♯‘𝑑)) |
11 | 10 | oveq1d 7431 |
. . . . 5
⊢ (𝑐 = 𝑑 → ((♯‘𝑐) − 1) = ((♯‘𝑑) − 1)) |
12 | 11 | oveq2d 7432 |
. . . 4
⊢ (𝑐 = 𝑑 → (0..^((♯‘𝑐) − 1)) =
(0..^((♯‘𝑑)
− 1))) |
13 | | fveq1 6892 |
. . . . 5
⊢ (𝑐 = 𝑑 → (𝑐‘𝑖) = (𝑑‘𝑖)) |
14 | | fveq2 6893 |
. . . . 5
⊢ (𝑐 = 𝑑 → (lastS‘𝑐) = (lastS‘𝑑)) |
15 | 13, 14 | breq12d 5158 |
. . . 4
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑖) < (lastS‘𝑐) ↔ (𝑑‘𝑖) < (lastS‘𝑑))) |
16 | 12, 15 | raleqbidv 3330 |
. . 3
⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (0..^((♯‘𝑐) − 1))(𝑐‘𝑖) < (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^((♯‘𝑑)
− 1))(𝑑‘𝑖) < (lastS‘𝑑))) |
17 | | fveq2 6893 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑐‘𝑖) = (𝑐‘𝑗)) |
18 | 17 | breq1d 5155 |
. . . . 5
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖) < (lastS‘𝑐) ↔ (𝑐‘𝑗) < (lastS‘𝑐))) |
19 | 18 | cbvralvw 3225 |
. . . 4
⊢
(∀𝑖 ∈
(0..^((♯‘𝑐)
− 1))(𝑐‘𝑖) < (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^((♯‘𝑐)
− 1))(𝑐‘𝑗) < (lastS‘𝑐)) |
20 | | fveq2 6893 |
. . . . . . 7
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (♯‘𝑐) = (♯‘(𝑑 ++ 〈“𝑥”〉))) |
21 | 20 | oveq1d 7431 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → ((♯‘𝑐) − 1) =
((♯‘(𝑑 ++
〈“𝑥”〉)) − 1)) |
22 | 21 | oveq2d 7432 |
. . . . 5
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) →
(0..^((♯‘𝑐)
− 1)) = (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1))) |
23 | | fveq1 6892 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝑐‘𝑗) = ((𝑑 ++ 〈“𝑥”〉)‘𝑗)) |
24 | | fveq2 6893 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (lastS‘𝑐) = (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
25 | 23, 24 | breq12d 5158 |
. . . . 5
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → ((𝑐‘𝑗) < (lastS‘𝑐) ↔ ((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
26 | 22, 25 | raleqbidv 3330 |
. . . 4
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (∀𝑗 ∈
(0..^((♯‘𝑐)
− 1))(𝑐‘𝑗) < (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1))((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
27 | 19, 26 | bitrid 282 |
. . 3
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (∀𝑖 ∈
(0..^((♯‘𝑐)
− 1))(𝑐‘𝑖) < (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1))((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
28 | | fveq2 6893 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (♯‘𝑐) = (♯‘𝐶)) |
29 | 28 | oveq1d 7431 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((♯‘𝑐) − 1) = ((♯‘𝐶) − 1)) |
30 | 29 | oveq2d 7432 |
. . . 4
⊢ (𝑐 = 𝐶 → (0..^((♯‘𝑐) − 1)) =
(0..^((♯‘𝐶)
− 1))) |
31 | | fveq1 6892 |
. . . . 5
⊢ (𝑐 = 𝐶 → (𝑐‘𝑖) = (𝐶‘𝑖)) |
32 | | fveq2 6893 |
. . . . 5
⊢ (𝑐 = 𝐶 → (lastS‘𝑐) = (lastS‘𝐶)) |
33 | 31, 32 | breq12d 5158 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑐‘𝑖) < (lastS‘𝑐) ↔ (𝐶‘𝑖) < (lastS‘𝐶))) |
34 | 30, 33 | raleqbidv 3330 |
. . 3
⊢ (𝑐 = 𝐶 → (∀𝑖 ∈ (0..^((♯‘𝑐) − 1))(𝑐‘𝑖) < (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^((♯‘𝐶)
− 1))(𝐶‘𝑖) < (lastS‘𝐶))) |
35 | | chnub.2 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
36 | | ral0 4507 |
. . . . 5
⊢
∀𝑖 ∈
∅ (∅‘𝑖)
<
(lastS‘∅) |
37 | | hash0 14379 |
. . . . . . . . 9
⊢
(♯‘∅) = 0 |
38 | 37 | oveq1i 7426 |
. . . . . . . 8
⊢
((♯‘∅) − 1) = (0 − 1) |
39 | | df-neg 11488 |
. . . . . . . . 9
⊢ -1 = (0
− 1) |
40 | | neg1rr 12373 |
. . . . . . . . . 10
⊢ -1 ∈
ℝ |
41 | | 0re 11257 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
42 | | neg1lt0 12375 |
. . . . . . . . . 10
⊢ -1 <
0 |
43 | 40, 41, 42 | ltleii 11378 |
. . . . . . . . 9
⊢ -1 ≤
0 |
44 | 39, 43 | eqbrtrri 5168 |
. . . . . . . 8
⊢ (0
− 1) ≤ 0 |
45 | 38, 44 | eqbrtri 5166 |
. . . . . . 7
⊢
((♯‘∅) − 1) ≤ 0 |
46 | | 0z 12615 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
47 | 37, 46 | eqeltri 2822 |
. . . . . . . . 9
⊢
(♯‘∅) ∈ ℤ |
48 | | 1z 12638 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
49 | | zsubcl 12650 |
. . . . . . . . 9
⊢
(((♯‘∅) ∈ ℤ ∧ 1 ∈ ℤ) →
((♯‘∅) − 1) ∈ ℤ) |
50 | 47, 48, 49 | mp2an 690 |
. . . . . . . 8
⊢
((♯‘∅) − 1) ∈ ℤ |
51 | | fzon 13701 |
. . . . . . . 8
⊢ ((0
∈ ℤ ∧ ((♯‘∅) − 1) ∈ ℤ) →
(((♯‘∅) − 1) ≤ 0 ↔
(0..^((♯‘∅) − 1)) = ∅)) |
52 | 46, 50, 51 | mp2an 690 |
. . . . . . 7
⊢
(((♯‘∅) − 1) ≤ 0 ↔
(0..^((♯‘∅) − 1)) = ∅) |
53 | 45, 52 | mpbi 229 |
. . . . . 6
⊢
(0..^((♯‘∅) − 1)) = ∅ |
54 | 53 | raleqi 3313 |
. . . . 5
⊢
(∀𝑖 ∈
(0..^((♯‘∅) − 1))(∅‘𝑖) < (lastS‘∅)
↔ ∀𝑖 ∈
∅ (∅‘𝑖)
<
(lastS‘∅)) |
55 | 36, 54 | mpbir 230 |
. . . 4
⊢
∀𝑖 ∈
(0..^((♯‘∅) − 1))(∅‘𝑖) <
(lastS‘∅) |
56 | 55 | a1i 11 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0..^((♯‘∅) −
1))(∅‘𝑖) <
(lastS‘∅)) |
57 | | simp-6r 786 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
𝑑 ∈ ( < Chain𝐴)) |
58 | 57 | chnwrd 32880 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
𝑑 ∈ Word 𝐴) |
59 | | ccatws1len 14623 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ Word 𝐴 → (♯‘(𝑑 ++ 〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(♯‘(𝑑 ++
〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
61 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
𝑑 =
∅) |
62 | 61 | fveq2d 6897 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(♯‘𝑑) =
(♯‘∅)) |
63 | 62, 37 | eqtrdi 2782 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(♯‘𝑑) =
0) |
64 | 63 | oveq1d 7431 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
((♯‘𝑑) + 1) =
(0 + 1)) |
65 | | 0p1e1 12380 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
66 | 65 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(0 + 1) = 1) |
67 | 60, 64, 66 | 3eqtrd 2770 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(♯‘(𝑑 ++
〈“𝑥”〉)) = 1) |
68 | 67 | oveq1d 7431 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
((♯‘(𝑑 ++
〈“𝑥”〉)) − 1) = (1 −
1)) |
69 | | 1m1e0 12330 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
70 | 68, 69 | eqtrdi 2782 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
((♯‘(𝑑 ++
〈“𝑥”〉)) − 1) =
0) |
71 | 70 | oveq2d 7432 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1)) =
(0..^0)) |
72 | | fzo0 13704 |
. . . . . . 7
⊢ (0..^0) =
∅ |
73 | 71, 72 | eqtrdi 2782 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1)) =
∅) |
74 | | simplr 767 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
𝑗 ∈
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1))) |
75 | 74 | ne0d 4335 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1)) ≠
∅) |
76 | 73, 75 | pm2.21ddne 3016 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 = ∅) →
((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
77 | | chnub.1 |
. . . . . . . 8
⊢ (𝜑 → < Po 𝐴) |
78 | 77 | ad7antr 736 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → < Po 𝐴) |
79 | | simp-6r 786 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑑 ∈ ( < Chain𝐴)) |
80 | 79 | chnwrd 32880 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑑 ∈ Word 𝐴) |
81 | 80 | adantr 479 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑑
∈ Word 𝐴) |
82 | | simp-5r 784 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑥 ∈ 𝐴) |
83 | 82 | adantr 479 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑥
∈ 𝐴) |
84 | | ccatws1cl 14619 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑑 ++ 〈“𝑥”〉) ∈ Word 𝐴) |
85 | 81, 83, 84 | syl2anc 582 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (𝑑 ++
〈“𝑥”〉) ∈ Word 𝐴) |
86 | | lencl 14536 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ Word 𝐴 → (♯‘𝑑) ∈
ℕ0) |
87 | 80, 86 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ ℕ0) |
88 | 87 | nn0zd 12630 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ ℤ) |
89 | | 1zzd 12639 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 1 ∈ ℤ) |
90 | 88, 89 | zsubcld 12717 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑)
− 1) ∈ ℤ) |
91 | 88 | peano2zd 12715 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑) +
1) ∈ ℤ) |
92 | 90 | zred 12712 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑)
− 1) ∈ ℝ) |
93 | 91 | zred 12712 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑) +
1) ∈ ℝ) |
94 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑑 ≠
∅) |
95 | | hasheq0 14375 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ Word 𝐴 → ((♯‘𝑑) = 0 ↔ 𝑑 = ∅)) |
96 | 95 | necon3bid 2975 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ Word 𝐴 → ((♯‘𝑑) ≠ 0 ↔ 𝑑 ≠ ∅)) |
97 | 96 | biimpar 476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑑 ≠ ∅) → (♯‘𝑑) ≠ 0) |
98 | 80, 94, 97 | syl2anc 582 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
≠ 0) |
99 | | elnnne0 12532 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑑)
∈ ℕ ↔ ((♯‘𝑑) ∈ ℕ0 ∧
(♯‘𝑑) ≠
0)) |
100 | 87, 98, 99 | sylanbrc 581 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ ℕ) |
101 | 100 | nnred 12273 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ ℝ) |
102 | 101 | ltm1d 12192 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑)
− 1) < (♯‘𝑑)) |
103 | 101 | ltp1d 12190 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
< ((♯‘𝑑) +
1)) |
104 | 92, 101, 93, 102, 103 | lttrd 11416 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑)
− 1) < ((♯‘𝑑) + 1)) |
105 | 92, 93, 104 | ltled 11403 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑)
− 1) ≤ ((♯‘𝑑) + 1)) |
106 | | eluz2 12874 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑑)
+ 1) ∈ (ℤ≥‘((♯‘𝑑) − 1)) ↔ (((♯‘𝑑) − 1) ∈ ℤ
∧ ((♯‘𝑑) +
1) ∈ ℤ ∧ ((♯‘𝑑) − 1) ≤ ((♯‘𝑑) + 1))) |
107 | 90, 91, 105, 106 | syl3anbrc 1340 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘𝑑) +
1) ∈ (ℤ≥‘((♯‘𝑑) − 1))) |
108 | | fzoss2 13708 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑑)
+ 1) ∈ (ℤ≥‘((♯‘𝑑) − 1)) →
(0..^((♯‘𝑑)
− 1)) ⊆ (0..^((♯‘𝑑) + 1))) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (0..^((♯‘𝑑) − 1)) ⊆
(0..^((♯‘𝑑) +
1))) |
110 | 109 | sselda 3978 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑗
∈ (0..^((♯‘𝑑) + 1))) |
111 | 81, 59 | syl 17 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (♯‘(𝑑 ++ 〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
112 | 111 | oveq2d 7432 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (0..^(♯‘(𝑑 ++ 〈“𝑥”〉))) = (0..^((♯‘𝑑) + 1))) |
113 | 110, 112 | eleqtrrd 2829 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑗
∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) |
114 | | wrdsymbcl 14530 |
. . . . . . . . 9
⊢ (((𝑑 ++ 〈“𝑥”〉) ∈ Word 𝐴 ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∈ 𝐴) |
115 | 85, 113, 114 | syl2anc 582 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → ((𝑑 ++
〈“𝑥”〉)‘𝑗) ∈ 𝐴) |
116 | | simplr 767 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑑 ≠
∅) |
117 | | lswcl 14571 |
. . . . . . . . 9
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑑 ≠ ∅) → (lastS‘𝑑) ∈ 𝐴) |
118 | 81, 116, 117 | syl2anc 582 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (lastS‘𝑑) ∈ 𝐴) |
119 | | lswccats1 14637 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴) → (lastS‘(𝑑 ++ 〈“𝑥”〉)) = 𝑥) |
120 | 80, 82, 119 | syl2anc 582 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (lastS‘(𝑑 ++
〈“𝑥”〉)) = 𝑥) |
121 | 120 | adantr 479 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (lastS‘(𝑑 ++ 〈“𝑥”〉)) = 𝑥) |
122 | 121, 83 | eqeltrd 2826 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (lastS‘(𝑑 ++ 〈“𝑥”〉)) ∈ 𝐴) |
123 | 115, 118,
122 | 3jca 1125 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (((𝑑 ++
〈“𝑥”〉)‘𝑗) ∈ 𝐴 ∧ (lastS‘𝑑) ∈ 𝐴 ∧ (lastS‘(𝑑 ++ 〈“𝑥”〉)) ∈ 𝐴)) |
124 | | simplr 767 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑗 ∈
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1))) |
125 | 59 | oveq1d 7431 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ Word 𝐴 → ((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1) =
(((♯‘𝑑) + 1)
− 1)) |
126 | 80, 125 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘(𝑑
++ 〈“𝑥”〉)) − 1) =
(((♯‘𝑑) + 1)
− 1)) |
127 | 100 | nncnd 12274 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ ℂ) |
128 | | 1cnd 11250 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 1 ∈ ℂ) |
129 | 127, 128 | pncand 11613 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (((♯‘𝑑)
+ 1) − 1) = (♯‘𝑑)) |
130 | 126, 129 | eqtrd 2766 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((♯‘(𝑑
++ 〈“𝑥”〉)) − 1) =
(♯‘𝑑)) |
131 | 130 | oveq2d 7432 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)) =
(0..^(♯‘𝑑))) |
132 | 124, 131 | eleqtrd 2828 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑗 ∈
(0..^(♯‘𝑑))) |
133 | 132 | adantr 479 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑗
∈ (0..^(♯‘𝑑))) |
134 | | ccats1val1 14629 |
. . . . . . . . 9
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑗 ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = (𝑑‘𝑗)) |
135 | 81, 133, 134 | syl2anc 582 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → ((𝑑 ++
〈“𝑥”〉)‘𝑗) = (𝑑‘𝑗)) |
136 | | fveq2 6893 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑑‘𝑖) = (𝑑‘𝑗)) |
137 | 136 | breq1d 5155 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑑‘𝑖) < (lastS‘𝑑) ↔ (𝑑‘𝑗) < (lastS‘𝑑))) |
138 | | simp-4r 782 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) |
139 | | simpr 483 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → 𝑗
∈ (0..^((♯‘𝑑) − 1))) |
140 | 137, 138,
139 | rspcdva 3608 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (𝑑‘𝑗) < (lastS‘𝑑)) |
141 | 135, 140 | eqbrtrd 5167 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → ((𝑑 ++
〈“𝑥”〉)‘𝑗) < (lastS‘𝑑)) |
142 | | simp-4r 782 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (𝑑 = ∅ ∨
(lastS‘𝑑) < 𝑥)) |
143 | 94 | neneqd 2935 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ¬ 𝑑 =
∅) |
144 | 142, 143 | orcnd 876 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (lastS‘𝑑)
<
𝑥) |
145 | 144 | adantr 479 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (lastS‘𝑑) < 𝑥) |
146 | 145, 121 | breqtrrd 5173 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → (lastS‘𝑑) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
147 | | potr 5599 |
. . . . . . . 8
⊢ (( < Po 𝐴 ∧ (((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∈ 𝐴 ∧ (lastS‘𝑑) ∈ 𝐴 ∧ (lastS‘(𝑑 ++ 〈“𝑥”〉)) ∈ 𝐴)) → ((((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘𝑑) ∧ (lastS‘𝑑) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
148 | 147 | imp 405 |
. . . . . . 7
⊢ ((( < Po 𝐴 ∧ (((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∈ 𝐴 ∧ (lastS‘𝑑) ∈ 𝐴 ∧ (lastS‘(𝑑 ++ 〈“𝑥”〉)) ∈ 𝐴)) ∧ (((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘𝑑) ∧ (lastS‘𝑑) < (lastS‘(𝑑 ++ 〈“𝑥”〉)))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
149 | 78, 123, 141, 146, 148 | syl22anc 837 |
. . . . . 6
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 ∈
(0..^((♯‘𝑑)
− 1))) → ((𝑑 ++
〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
150 | 144 | adantr 479 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
(lastS‘𝑑) < 𝑥) |
151 | 80 | adantr 479 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → 𝑑 ∈ Word 𝐴) |
152 | | simp-6r 786 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → 𝑥 ∈ 𝐴) |
153 | 152 | s1cld 14606 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
〈“𝑥”〉
∈ Word 𝐴) |
154 | 100 | adantr 479 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
(♯‘𝑑) ∈
ℕ) |
155 | | fzo0end 13772 |
. . . . . . . . . 10
⊢
((♯‘𝑑)
∈ ℕ → ((♯‘𝑑) − 1) ∈ (0..^(♯‘𝑑))) |
156 | 154, 155 | syl 17 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
((♯‘𝑑) −
1) ∈ (0..^(♯‘𝑑))) |
157 | | ccatval1 14580 |
. . . . . . . . 9
⊢ ((𝑑 ∈ Word 𝐴 ∧ 〈“𝑥”〉 ∈ Word 𝐴 ∧ ((♯‘𝑑) − 1) ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ 〈“𝑥”〉)‘((♯‘𝑑) − 1)) = (𝑑‘((♯‘𝑑) − 1))) |
158 | 151, 153,
156, 157 | syl3anc 1368 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → ((𝑑 ++ 〈“𝑥”〉)‘((♯‘𝑑) − 1)) = (𝑑‘((♯‘𝑑) − 1))) |
159 | | simpr 483 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → 𝑗 = ((♯‘𝑑) − 1)) |
160 | 159 | fveq2d 6897 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = ((𝑑 ++ 〈“𝑥”〉)‘((♯‘𝑑) − 1))) |
161 | | lsw 14567 |
. . . . . . . . 9
⊢ (𝑑 ∈ Word 𝐴 → (lastS‘𝑑) = (𝑑‘((♯‘𝑑) − 1))) |
162 | 151, 161 | syl 17 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
(lastS‘𝑑) = (𝑑‘((♯‘𝑑) − 1))) |
163 | 158, 160,
162 | 3eqtr4d 2776 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = (lastS‘𝑑)) |
164 | 120 | adantr 479 |
. . . . . . 7
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) →
(lastS‘(𝑑 ++
〈“𝑥”〉)) = 𝑥) |
165 | 150, 163,
164 | 3brtr4d 5177 |
. . . . . 6
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅) ∧
𝑗 = ((♯‘𝑑) − 1)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
166 | 65 | fveq2i 6896 |
. . . . . . . . . . 11
⊢
(ℤ≥‘(0 + 1)) =
(ℤ≥‘1) |
167 | | nnuz 12911 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
168 | 166, 167 | eqtr4i 2757 |
. . . . . . . . . 10
⊢
(ℤ≥‘(0 + 1)) = ℕ |
169 | 100, 168 | eleqtrrdi 2837 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (♯‘𝑑)
∈ (ℤ≥‘(0 + 1))) |
170 | | fzosplitsnm1 13755 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (♯‘𝑑) ∈ (ℤ≥‘(0 +
1))) → (0..^(♯‘𝑑)) = ((0..^((♯‘𝑑) − 1)) ∪ {((♯‘𝑑) − 1)})) |
171 | 46, 169, 170 | sylancr 585 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (0..^(♯‘𝑑)) = ((0..^((♯‘𝑑) − 1)) ∪ {((♯‘𝑑) − 1)})) |
172 | 132, 171 | eleqtrd 2828 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ 𝑗 ∈
((0..^((♯‘𝑑)
− 1)) ∪ {((♯‘𝑑) − 1)})) |
173 | | elunsn 32439 |
. . . . . . . 8
⊢ (𝑗 ∈
((0..^((♯‘𝑑)
− 1)) ∪ {((♯‘𝑑) − 1)}) → (𝑗 ∈ ((0..^((♯‘𝑑) − 1)) ∪
{((♯‘𝑑) −
1)}) ↔ (𝑗 ∈
(0..^((♯‘𝑑)
− 1)) ∨ 𝑗 =
((♯‘𝑑) −
1)))) |
174 | 173 | ibi 266 |
. . . . . . 7
⊢ (𝑗 ∈
((0..^((♯‘𝑑)
− 1)) ∪ {((♯‘𝑑) − 1)}) → (𝑗 ∈ (0..^((♯‘𝑑) − 1)) ∨ 𝑗 = ((♯‘𝑑) − 1))) |
175 | 172, 174 | syl 17 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ (𝑗 ∈
(0..^((♯‘𝑑)
− 1)) ∨ 𝑗 =
((♯‘𝑑) −
1))) |
176 | 149, 165,
175 | mpjaodan 956 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
∧ 𝑑 ≠ ∅)
→ ((𝑑 ++
〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
177 | 76, 176 | pm2.61dane 3019 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^((♯‘(𝑑 ++ 〈“𝑥”〉)) − 1)))
→ ((𝑑 ++
〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
178 | 177 | ralrimiva 3136 |
. . 3
⊢
(((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑑) − 1))(𝑑‘𝑖) < (lastS‘𝑑)) → ∀𝑗 ∈
(0..^((♯‘(𝑑 ++
〈“𝑥”〉)) − 1))((𝑑 ++ 〈“𝑥”〉)‘𝑗) < (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
179 | 9, 16, 27, 34, 35, 56, 178 | chnind 32883 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ (0..^((♯‘𝐶) − 1))(𝐶‘𝑖) < (lastS‘𝐶)) |
180 | | chnub.3 |
. 2
⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘𝐶) − 1))) |
181 | 2, 179, 180 | rspcdva 3608 |
1
⊢ (𝜑 → (𝐶‘𝐼) < (lastS‘𝐶)) |