| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6822 |
. . 3
⊢ (𝑖 = 𝐽 → (𝐶‘𝑖) = (𝐶‘𝐽)) |
| 2 | 1 | breq1d 5099 |
. 2
⊢ (𝑖 = 𝐽 → ((𝐶‘𝑖) ∼ (lastS‘𝐶) ↔ (𝐶‘𝐽) ∼ (lastS‘𝐶))) |
| 3 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = ∅ →
(♯‘𝑐) =
(♯‘∅)) |
| 4 | 3 | oveq2d 7362 |
. . . 4
⊢ (𝑐 = ∅ →
(0..^(♯‘𝑐)) =
(0..^(♯‘∅))) |
| 5 | | fveq1 6821 |
. . . . 5
⊢ (𝑐 = ∅ → (𝑐‘𝑖) = (∅‘𝑖)) |
| 6 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = ∅ →
(lastS‘𝑐) =
(lastS‘∅)) |
| 7 | 5, 6 | breq12d 5102 |
. . . 4
⊢ (𝑐 = ∅ → ((𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ (∅‘𝑖) ∼
(lastS‘∅))) |
| 8 | 4, 7 | raleqbidv 3312 |
. . 3
⊢ (𝑐 = ∅ → (∀𝑖 ∈
(0..^(♯‘𝑐))(𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^(♯‘∅))(∅‘𝑖) ∼
(lastS‘∅))) |
| 9 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = 𝑑 → (♯‘𝑐) = (♯‘𝑑)) |
| 10 | 9 | oveq2d 7362 |
. . . 4
⊢ (𝑐 = 𝑑 → (0..^(♯‘𝑐)) = (0..^(♯‘𝑑))) |
| 11 | | fveq1 6821 |
. . . . 5
⊢ (𝑐 = 𝑑 → (𝑐‘𝑖) = (𝑑‘𝑖)) |
| 12 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = 𝑑 → (lastS‘𝑐) = (lastS‘𝑑)) |
| 13 | 11, 12 | breq12d 5102 |
. . . 4
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ (𝑑‘𝑖) ∼ (lastS‘𝑑))) |
| 14 | 10, 13 | raleqbidv 3312 |
. . 3
⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (0..^(♯‘𝑐))(𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑))) |
| 15 | | fveq2 6822 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑐‘𝑖) = (𝑐‘𝑗)) |
| 16 | 15 | breq1d 5099 |
. . . . 5
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ (𝑐‘𝑗) ∼ (lastS‘𝑐))) |
| 17 | 16 | cbvralvw 3210 |
. . . 4
⊢
(∀𝑖 ∈
(0..^(♯‘𝑐))(𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^(♯‘𝑐))(𝑐‘𝑗) ∼ (lastS‘𝑐)) |
| 18 | | fveq2 6822 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (♯‘𝑐) = (♯‘(𝑑 ++ 〈“𝑥”〉))) |
| 19 | 18 | oveq2d 7362 |
. . . . 5
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) →
(0..^(♯‘𝑐)) =
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))) |
| 20 | | fveq1 6821 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝑐‘𝑗) = ((𝑑 ++ 〈“𝑥”〉)‘𝑗)) |
| 21 | | fveq2 6822 |
. . . . . 6
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (lastS‘𝑐) = (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
| 22 | 20, 21 | breq12d 5102 |
. . . . 5
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → ((𝑐‘𝑗) ∼ (lastS‘𝑐) ↔ ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
| 23 | 19, 22 | raleqbidv 3312 |
. . . 4
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (∀𝑗 ∈
(0..^(♯‘𝑐))(𝑐‘𝑗) ∼ (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
| 24 | 17, 23 | bitrid 283 |
. . 3
⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (∀𝑖 ∈
(0..^(♯‘𝑐))(𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ ∀𝑗 ∈
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉)))) |
| 25 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = 𝐶 → (♯‘𝑐) = (♯‘𝐶)) |
| 26 | 25 | oveq2d 7362 |
. . . 4
⊢ (𝑐 = 𝐶 → (0..^(♯‘𝑐)) = (0..^(♯‘𝐶))) |
| 27 | | fveq1 6821 |
. . . . 5
⊢ (𝑐 = 𝐶 → (𝑐‘𝑖) = (𝐶‘𝑖)) |
| 28 | | fveq2 6822 |
. . . . 5
⊢ (𝑐 = 𝐶 → (lastS‘𝑐) = (lastS‘𝐶)) |
| 29 | 27, 28 | breq12d 5102 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ (𝐶‘𝑖) ∼ (lastS‘𝐶))) |
| 30 | 26, 29 | raleqbidv 3312 |
. . 3
⊢ (𝑐 = 𝐶 → (∀𝑖 ∈ (0..^(♯‘𝑐))(𝑐‘𝑖) ∼ (lastS‘𝑐) ↔ ∀𝑖 ∈
(0..^(♯‘𝐶))(𝐶‘𝑖) ∼ (lastS‘𝐶))) |
| 31 | | chner.2 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴)) |
| 32 | | 0nnn 12161 |
. . . . . . 7
⊢ ¬ 0
∈ ℕ |
| 33 | | hash0 14274 |
. . . . . . . 8
⊢
(♯‘∅) = 0 |
| 34 | 33 | eleq1i 2822 |
. . . . . . 7
⊢
((♯‘∅) ∈ ℕ ↔ 0 ∈
ℕ) |
| 35 | 32, 34 | mtbir 323 |
. . . . . 6
⊢ ¬
(♯‘∅) ∈ ℕ |
| 36 | | fzo0n0 13616 |
. . . . . 6
⊢
((0..^(♯‘∅)) ≠ ∅ ↔
(♯‘∅) ∈ ℕ) |
| 37 | 35, 36 | mtbir 323 |
. . . . 5
⊢ ¬
(0..^(♯‘∅)) ≠ ∅ |
| 38 | | nne 2932 |
. . . . 5
⊢ (¬
(0..^(♯‘∅)) ≠ ∅ ↔ (0..^(♯‘∅))
= ∅) |
| 39 | 37, 38 | mpbi 230 |
. . . 4
⊢
(0..^(♯‘∅)) = ∅ |
| 40 | | rzal 4456 |
. . . 4
⊢
((0..^(♯‘∅)) = ∅ → ∀𝑖 ∈
(0..^(♯‘∅))(∅‘𝑖) ∼
(lastS‘∅)) |
| 41 | 39, 40 | mp1i 13 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈
(0..^(♯‘∅))(∅‘𝑖) ∼
(lastS‘∅)) |
| 42 | | chner.1 |
. . . . . . . 8
⊢ (𝜑 → ∼ Er 𝐴) |
| 43 | 42 | ad6antr 736 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → ∼ Er
𝐴) |
| 44 | | simp-5r 785 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑥 ∈ 𝐴) |
| 45 | 43, 44 | erref 8642 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑥 ∼ 𝑥) |
| 46 | | simp-6r 787 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑑 ∈ ( ∼ Chain 𝐴)) |
| 47 | 46 | chnwrd 18514 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑑 ∈ Word 𝐴) |
| 48 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑗 ∈
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))) |
| 49 | | ccatws1len 14528 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ Word 𝐴 → (♯‘(𝑑 ++ 〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
| 50 | 47, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
(♯‘(𝑑 ++
〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
| 51 | | fveq2 6822 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = ∅ →
(♯‘𝑑) =
(♯‘∅)) |
| 52 | 51, 33 | eqtr2di 2783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = ∅ → 0 =
(♯‘𝑑)) |
| 53 | 52 | eqcomd 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = ∅ →
(♯‘𝑑) =
0) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
(♯‘𝑑) =
0) |
| 55 | 54 | oveq1d 7361 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
((♯‘𝑑) + 1) =
(0 + 1)) |
| 56 | | 0p1e1 12242 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
| 57 | 55, 56 | eqtrdi 2782 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
((♯‘𝑑) + 1) =
1) |
| 58 | 50, 57 | eqtrd 2766 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
(♯‘(𝑑 ++
〈“𝑥”〉)) = 1) |
| 59 | 58 | oveq2d 7362 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
(0..^(♯‘(𝑑 ++
〈“𝑥”〉))) = (0..^1)) |
| 60 | 48, 59 | eleqtrd 2833 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑗 ∈
(0..^1)) |
| 61 | | fzo01 13647 |
. . . . . . . . . . 11
⊢ (0..^1) =
{0} |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → (0..^1) =
{0}) |
| 63 | 60, 62 | eleqtrd 2833 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑗 ∈ {0}) |
| 64 | | elsni 4590 |
. . . . . . . . 9
⊢ (𝑗 ∈ {0} → 𝑗 = 0) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑗 = 0) |
| 66 | 52 | adantl 481 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 0 =
(♯‘𝑑)) |
| 67 | 65, 66 | eqtrd 2766 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → 𝑗 = (♯‘𝑑)) |
| 68 | | ccats1val2 14535 |
. . . . . . 7
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑗 = (♯‘𝑑)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = 𝑥) |
| 69 | 47, 44, 67, 68 | syl3anc 1373 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = 𝑥) |
| 70 | | lswccats1 14542 |
. . . . . . 7
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴) → (lastS‘(𝑑 ++ 〈“𝑥”〉)) = 𝑥) |
| 71 | 47, 44, 70 | syl2anc 584 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) →
(lastS‘(𝑑 ++
〈“𝑥”〉)) = 𝑥) |
| 72 | 45, 69, 71 | 3brtr4d 5121 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 = ∅) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
| 73 | 42 | ad6antr 736 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → ∼ Er
𝐴) |
| 74 | | simp-6r 787 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → 𝑑 ∈ ( ∼ Chain 𝐴)) |
| 75 | 74 | chnwrd 18514 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → 𝑑 ∈ Word 𝐴) |
| 76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → 𝑑 ∈ Word 𝐴) |
| 77 | | simp-6r 787 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → 𝑥 ∈ 𝐴) |
| 78 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → 𝑗 = (♯‘𝑑)) |
| 79 | 76, 77, 78, 68 | syl3anc 1373 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) = 𝑥) |
| 80 | | simp-4r 783 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → (𝑑 = ∅ ∨
(lastS‘𝑑) ∼ 𝑥)) |
| 81 | | neneq 2934 |
. . . . . . . . . . . . 13
⊢ (𝑑 ≠ ∅ → ¬ 𝑑 = ∅) |
| 82 | 81 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → ¬
𝑑 =
∅) |
| 83 | 80, 82 | orcnd 878 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) →
(lastS‘𝑑) ∼ 𝑥) |
| 84 | 73, 83 | ersym 8634 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → 𝑥 ∼ (lastS‘𝑑)) |
| 85 | 84 | adantr 480 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → 𝑥 ∼ (lastS‘𝑑)) |
| 86 | 79, 85 | eqbrtrd 5111 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 = (♯‘𝑑)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘𝑑)) |
| 87 | | fveq2 6822 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝑑 ++ 〈“𝑥”〉)‘𝑖) = ((𝑑 ++ 〈“𝑥”〉)‘𝑗)) |
| 88 | 87 | breq1d 5099 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (((𝑑 ++ 〈“𝑥”〉)‘𝑖) ∼ (lastS‘𝑑) ↔ ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘𝑑))) |
| 89 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) → ∀𝑖 ∈
(0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) |
| 90 | 89 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → ∀𝑖 ∈
(0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) |
| 91 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → 𝑑 ∈ ( ∼ Chain 𝐴)) |
| 92 | 91 | chnwrd 18514 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → 𝑑 ∈ Word 𝐴) |
| 93 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → 𝑖 ∈ (0..^(♯‘𝑑))) |
| 94 | | ccats1val1 14534 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ Word 𝐴 ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑖) = (𝑑‘𝑖)) |
| 95 | 92, 93, 94 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑖) = (𝑑‘𝑖)) |
| 96 | 95 | eqcomd 2737 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → (𝑑‘𝑖) = ((𝑑 ++ 〈“𝑥”〉)‘𝑖)) |
| 97 | 96 | breq1d 5099 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑖 ∈ (0..^(♯‘𝑑))) → ((𝑑‘𝑖) ∼ (lastS‘𝑑) ↔ ((𝑑 ++ 〈“𝑥”〉)‘𝑖) ∼ (lastS‘𝑑))) |
| 98 | 97 | ralbidva 3153 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) → (∀𝑖 ∈
(0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑) ↔ ∀𝑖 ∈
(0..^(♯‘𝑑))((𝑑 ++ 〈“𝑥”〉)‘𝑖) ∼ (lastS‘𝑑))) |
| 99 | 98 | ad6antr 736 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → (∀𝑖 ∈
(0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑) ↔ ∀𝑖 ∈
(0..^(♯‘𝑑))((𝑑 ++ 〈“𝑥”〉)‘𝑖) ∼ (lastS‘𝑑))) |
| 100 | 90, 99 | mpbid 232 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → ∀𝑖 ∈
(0..^(♯‘𝑑))((𝑑 ++ 〈“𝑥”〉)‘𝑖) ∼ (lastS‘𝑑)) |
| 101 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → 𝑗 ∈
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))) |
| 102 | | simp-5r 785 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → 𝑑 ∈ ( ∼ Chain 𝐴)) |
| 103 | 102 | chnwrd 18514 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → 𝑑 ∈ Word 𝐴) |
| 104 | 103, 49 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) →
(♯‘(𝑑 ++
〈“𝑥”〉)) = ((♯‘𝑑) + 1)) |
| 105 | 104 | oveq2d 7362 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) →
(0..^(♯‘(𝑑 ++
〈“𝑥”〉))) = (0..^((♯‘𝑑) + 1))) |
| 106 | 101, 105 | eleqtrd 2833 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → 𝑗 ∈
(0..^((♯‘𝑑) +
1))) |
| 107 | 106 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → 𝑗 ∈ (0..^((♯‘𝑑) + 1))) |
| 108 | | simp-7r 789 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → 𝑑 ∈ ( ∼ Chain 𝐴)) |
| 109 | 108 | chnwrd 18514 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → 𝑑 ∈ Word 𝐴) |
| 110 | | lencl 14440 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ Word 𝐴 → (♯‘𝑑) ∈
ℕ0) |
| 111 | | nn0uz 12774 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
| 112 | 111 | eleq2i 2823 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑑)
∈ ℕ0 ↔ (♯‘𝑑) ∈
(ℤ≥‘0)) |
| 113 | 112 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑑)
∈ ℕ0 → (♯‘𝑑) ∈
(ℤ≥‘0)) |
| 114 | 109, 110,
113 | 3syl 18 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → (♯‘𝑑) ∈
(ℤ≥‘0)) |
| 115 | | fzosplitsni 13679 |
. . . . . . . . . . . 12
⊢
((♯‘𝑑)
∈ (ℤ≥‘0) → (𝑗 ∈ (0..^((♯‘𝑑) + 1)) ↔ (𝑗 ∈
(0..^(♯‘𝑑))
∨ 𝑗 =
(♯‘𝑑)))) |
| 116 | 114, 115 | syl 17 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → (𝑗 ∈ (0..^((♯‘𝑑) + 1)) ↔ (𝑗 ∈
(0..^(♯‘𝑑))
∨ 𝑗 =
(♯‘𝑑)))) |
| 117 | 107, 116 | mpbid 232 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → (𝑗 ∈ (0..^(♯‘𝑑)) ∨ 𝑗 = (♯‘𝑑))) |
| 118 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → 𝑗 ≠ (♯‘𝑑)) |
| 119 | | df-ne 2929 |
. . . . . . . . . . 11
⊢ (𝑗 ≠ (♯‘𝑑) ↔ ¬ 𝑗 = (♯‘𝑑)) |
| 120 | 118, 119 | sylib 218 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → ¬ 𝑗 = (♯‘𝑑)) |
| 121 | 117, 120 | olcnd 877 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → 𝑗 ∈ (0..^(♯‘𝑑))) |
| 122 | 88, 100, 121 | rspcdva 3573 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) ∧ 𝑗 ≠ (♯‘𝑑)) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘𝑑)) |
| 123 | 86, 122 | pm2.61dane 3015 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘𝑑)) |
| 124 | 73, 123, 83 | ertrd 8638 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ 𝑥) |
| 125 | | simp-5r 785 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → 𝑥 ∈ 𝐴) |
| 126 | 75, 125, 70 | syl2anc 584 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) →
(lastS‘(𝑑 ++
〈“𝑥”〉)) = 𝑥) |
| 127 | 124, 126 | breqtrrd 5117 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) ∧ 𝑑 ≠ ∅) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
| 128 | 72, 127 | pm2.61dane 3015 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) ∧ 𝑗 ∈ (0..^(♯‘(𝑑 ++ 〈“𝑥”〉)))) → ((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
| 129 | 128 | ralrimiva 3124 |
. . 3
⊢
(((((𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) ∼ 𝑥)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑑))(𝑑‘𝑖) ∼ (lastS‘𝑑)) → ∀𝑗 ∈
(0..^(♯‘(𝑑 ++
〈“𝑥”〉)))((𝑑 ++ 〈“𝑥”〉)‘𝑗) ∼ (lastS‘(𝑑 ++ 〈“𝑥”〉))) |
| 130 | 8, 14, 24, 30, 31, 41, 129 | chnind 18527 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) ∼ (lastS‘𝐶)) |
| 131 | | chner.3 |
. 2
⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| 132 | 2, 130, 131 | rspcdva 3573 |
1
⊢ (𝜑 → (𝐶‘𝐽) ∼ (lastS‘𝐶)) |