| Step | Hyp | Ref
| Expression |
| 1 | | chnsubseq.1 |
. . 3
⊢ (𝜑 → 𝑊 ∈ ( < Chain 𝐴)) |
| 2 | | chnsubseq.2 |
. . 3
⊢ (𝜑 → 𝐼 ∈ ( < Chain
(0..^(♯‘𝑊)))) |
| 3 | 1, 2 | chnsubseqword 46986 |
. 2
⊢ (𝜑 → (𝑊 ∘ 𝐼) ∈ Word 𝐴) |
| 4 | | chnsubseq.3 |
. . . . . 6
⊢ (𝜑 → < Po 𝐴) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → < Po 𝐴) |
| 6 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑊 ∈ ( < Chain 𝐴)) |
| 7 | 2 | chnwrd 18514 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ Word (0..^(♯‘𝑊))) |
| 8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝐼 ∈ Word (0..^(♯‘𝑊))) |
| 9 | | wrdf 14425 |
. . . . . . 7
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝐼:(0..^(♯‘𝐼))⟶(0..^(♯‘𝑊))) |
| 11 | | eldifi 4078 |
. . . . . . 7
⊢ (𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0}) → 𝑥 ∈ dom (𝑊 ∘ 𝐼)) |
| 12 | | wrddm 14428 |
. . . . . . . . . . 11
⊢ ((𝑊 ∘ 𝐼) ∈ Word 𝐴 → dom (𝑊 ∘ 𝐼) = (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 13 | 3, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑊 ∘ 𝐼) = (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 14 | 1, 2 | chnsubseqwl 46987 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)) |
| 15 | 14 | oveq2d 7362 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(♯‘(𝑊 ∘ 𝐼))) = (0..^(♯‘𝐼))) |
| 16 | 13, 15 | eqtrd 2766 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑊 ∘ 𝐼) = (0..^(♯‘𝐼))) |
| 17 | 16 | eleq2d 2817 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ dom (𝑊 ∘ 𝐼) ↔ 𝑥 ∈ (0..^(♯‘𝐼)))) |
| 18 | 17 | biimpa 476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝑊 ∘ 𝐼)) → 𝑥 ∈ (0..^(♯‘𝐼))) |
| 19 | 11, 18 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ (0..^(♯‘𝐼))) |
| 20 | 10, 19 | ffvelcdmd 7018 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘𝑥) ∈ (0..^(♯‘𝑊))) |
| 21 | | elfzonn0 13607 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘𝐼))
→ 𝑥 ∈
ℕ0) |
| 22 | 19, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ ℕ0) |
| 23 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) |
| 24 | 23 | eldifbd 3910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ¬ 𝑥 ∈ {0}) |
| 25 | | velsn 4589 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {0} ↔ 𝑥 = 0) |
| 26 | 24, 25 | sylnib 328 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ¬ 𝑥 = 0) |
| 27 | 26 | neqned 2935 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ≠ 0) |
| 28 | | elnnne0 12395 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ ↔ (𝑥 ∈ ℕ0
∧ 𝑥 ≠
0)) |
| 29 | 22, 27, 28 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ ℕ) |
| 30 | | nnm1ge0 12541 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ → 0 ≤
(𝑥 −
1)) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 0 ≤ (𝑥 − 1)) |
| 32 | 22 | nn0red 12443 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ ℝ) |
| 33 | | peano2rem 11428 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈
ℝ) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑥 − 1) ∈ ℝ) |
| 35 | | lencl 14440 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ (♯‘𝐼)
∈ ℕ0) |
| 36 | 7, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (♯‘𝐼) ∈
ℕ0) |
| 38 | 37 | nn0red 12443 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (♯‘𝐼) ∈
ℝ) |
| 39 | 32 | ltm1d 12054 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑥 − 1) < 𝑥) |
| 40 | 11 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ dom (𝑊 ∘ 𝐼)) |
| 41 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → dom (𝑊 ∘ 𝐼) = (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 42 | 40, 41 | eleqtrd 2833 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ (0..^(♯‘(𝑊 ∘ 𝐼)))) |
| 43 | | elfzolt2 13568 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘(𝑊
∘ 𝐼))) → 𝑥 < (♯‘(𝑊 ∘ 𝐼))) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 < (♯‘(𝑊 ∘ 𝐼))) |
| 45 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (♯‘(𝑊 ∘ 𝐼)) = (♯‘𝐼)) |
| 46 | 44, 45 | breqtrd 5115 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 < (♯‘𝐼)) |
| 47 | 34, 32, 38, 39, 46 | lttrd 11274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑥 − 1) < (♯‘𝐼)) |
| 48 | | elfzoelz 13559 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘𝐼))
→ 𝑥 ∈
ℤ) |
| 49 | 19, 48 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ ℤ) |
| 50 | | peano2zm 12515 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → (𝑥 − 1) ∈
ℤ) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑥 − 1) ∈ ℤ) |
| 52 | | 0zd 12480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 0 ∈
ℤ) |
| 53 | 36 | nn0zd 12494 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐼) ∈
ℤ) |
| 54 | 53 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (♯‘𝐼) ∈
ℤ) |
| 55 | | elfzo 13561 |
. . . . . . . . . 10
⊢ (((𝑥 − 1) ∈ ℤ ∧
0 ∈ ℤ ∧ (♯‘𝐼) ∈ ℤ) → ((𝑥 − 1) ∈
(0..^(♯‘𝐼))
↔ (0 ≤ (𝑥 −
1) ∧ (𝑥 − 1) <
(♯‘𝐼)))) |
| 56 | 51, 52, 54, 55 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ((𝑥 − 1) ∈ (0..^(♯‘𝐼)) ↔ (0 ≤ (𝑥 − 1) ∧ (𝑥 − 1) <
(♯‘𝐼)))) |
| 57 | 31, 47, 56 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑥 − 1) ∈ (0..^(♯‘𝐼))) |
| 58 | 10, 57 | ffvelcdmd 7018 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘(𝑥 − 1)) ∈ (0..^(♯‘𝑊))) |
| 59 | | elfzonn0 13607 |
. . . . . . 7
⊢ ((𝐼‘(𝑥 − 1)) ∈ (0..^(♯‘𝑊)) → (𝐼‘(𝑥 − 1)) ∈
ℕ0) |
| 60 | 58, 59 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘(𝑥 − 1)) ∈
ℕ0) |
| 61 | | elfzoelz 13559 |
. . . . . . 7
⊢ ((𝐼‘𝑥) ∈ (0..^(♯‘𝑊)) → (𝐼‘𝑥) ∈ ℤ) |
| 62 | 20, 61 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘𝑥) ∈ ℤ) |
| 63 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝐼 ∈ ( < Chain
(0..^(♯‘𝑊)))) |
| 64 | | wrddm 14428 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ Word
(0..^(♯‘𝑊))
→ dom 𝐼 =
(0..^(♯‘𝐼))) |
| 65 | 7, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐼 = (0..^(♯‘𝐼))) |
| 66 | 15, 13, 65 | 3eqtr4d 2776 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑊 ∘ 𝐼) = dom 𝐼) |
| 67 | 66 | difeq1d 4072 |
. . . . . . . . 9
⊢ (𝜑 → (dom (𝑊 ∘ 𝐼) ∖ {0}) = (dom 𝐼 ∖ {0})) |
| 68 | 67 | eleq2d 2817 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0}) ↔ 𝑥 ∈ (dom 𝐼 ∖ {0}))) |
| 69 | 68 | biimpa 476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → 𝑥 ∈ (dom 𝐼 ∖ {0})) |
| 70 | 63, 69 | chnltm1 18515 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘(𝑥 − 1)) < (𝐼‘𝑥)) |
| 71 | | elfzo0z 13601 |
. . . . . 6
⊢ ((𝐼‘(𝑥 − 1)) ∈ (0..^(𝐼‘𝑥)) ↔ ((𝐼‘(𝑥 − 1)) ∈ ℕ0 ∧
(𝐼‘𝑥) ∈ ℤ ∧ (𝐼‘(𝑥 − 1)) < (𝐼‘𝑥))) |
| 72 | 60, 62, 70, 71 | syl3anbrc 1344 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝐼‘(𝑥 − 1)) ∈ (0..^(𝐼‘𝑥))) |
| 73 | 5, 6, 20, 72 | chnlt 18529 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → (𝑊‘(𝐼‘(𝑥 − 1))) < (𝑊‘(𝐼‘𝑥))) |
| 74 | 10, 57 | fvco3d 6922 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ((𝑊 ∘ 𝐼)‘(𝑥 − 1)) = (𝑊‘(𝐼‘(𝑥 − 1)))) |
| 75 | 10, 19 | fvco3d 6922 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ((𝑊 ∘ 𝐼)‘𝑥) = (𝑊‘(𝐼‘𝑥))) |
| 76 | 73, 74, 75 | 3brtr4d 5121 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})) → ((𝑊 ∘ 𝐼)‘(𝑥 − 1)) < ((𝑊 ∘ 𝐼)‘𝑥)) |
| 77 | 76 | ralrimiva 3124 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})((𝑊 ∘ 𝐼)‘(𝑥 − 1)) < ((𝑊 ∘ 𝐼)‘𝑥)) |
| 78 | | ischn 18513 |
. 2
⊢ ((𝑊 ∘ 𝐼) ∈ ( < Chain 𝐴) ↔ ((𝑊 ∘ 𝐼) ∈ Word 𝐴 ∧ ∀𝑥 ∈ (dom (𝑊 ∘ 𝐼) ∖ {0})((𝑊 ∘ 𝐼)‘(𝑥 − 1)) < ((𝑊 ∘ 𝐼)‘𝑥))) |
| 79 | 3, 77, 78 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑊 ∘ 𝐼) ∈ ( < Chain 𝐴)) |