| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnlt | Structured version Visualization version GIF version | ||
| Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
| chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
| Ref | Expression |
|---|---|
| chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
| 2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
| 4 | fzofzp1 13785 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 6 | 2, 5 | pfxchn 32994 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴)) |
| 7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
| 8 | fzossz 13701 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
| 9 | 8, 3 | sselid 3961 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | 9 | zcnd 12703 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 11 | 1cnd 11235 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 12 | 2 | chnwrd 32992 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 13 | pfxlen 14706 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 15 | 10, 11, 14 | mvrraddd 11654 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
| 16 | 15 | oveq2d 7426 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
| 17 | 7, 16 | eleqtrrd 2838 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
| 18 | 1, 6, 17 | chnub 32997 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 19 | fzo0ssnn0 13767 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
| 20 | 19, 3 | sselid 3961 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| 21 | fzossfzop1 13764 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
| 23 | 22, 7 | sseldd 3964 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 24 | pfxfv 14705 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
| 25 | 12, 5, 23, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 26 | lencl 14556 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 28 | fz0add1fz1 13756 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
| 29 | 27, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 30 | pfxfvlsw 14718 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
| 31 | 12, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 32 | 10, 11 | pncand 11600 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 33 | 32 | fveq2d 6885 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 34 | 31, 33 | eqtrd 2771 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 35 | 18, 25, 34 | 3brtr3d 5155 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 Po wpo 5564 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 − cmin 11471 ℕ0cn0 12506 ℤcz 12593 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 Word cword 14536 lastSclsw 14585 prefix cpfx 14693 Chaincchn 32989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-chn 32990 |
| This theorem is referenced by: chnso 32999 |
| Copyright terms: Public domain | W3C validator |