| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnlt | Structured version Visualization version GIF version | ||
| Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
| chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
| Ref | Expression |
|---|---|
| chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
| 2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
| 4 | fzofzp1 13785 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 6 | 2, 5 | pfxchn 32938 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴)) |
| 7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
| 8 | fzossz 13701 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
| 9 | 8, 3 | sselid 3961 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | 9 | zcnd 12706 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 11 | 1cnd 11238 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 12 | 2 | chnwrd 32936 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 13 | pfxlen 14703 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 15 | 10, 11, 14 | mvrraddd 11657 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
| 16 | 15 | oveq2d 7429 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
| 17 | 7, 16 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
| 18 | 1, 6, 17 | chnub 32941 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 19 | fzo0ssnn0 13767 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
| 20 | 19, 3 | sselid 3961 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| 21 | fzossfzop1 13764 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
| 23 | 22, 7 | sseldd 3964 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 24 | pfxfv 14702 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
| 25 | 12, 5, 23, 24 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 26 | lencl 14553 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 28 | fz0add1fz1 13756 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
| 29 | 27, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 30 | pfxfvlsw 14715 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
| 31 | 12, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 32 | 10, 11 | pncand 11603 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 33 | 32 | fveq2d 6890 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 34 | 31, 33 | eqtrd 2769 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 35 | 18, 25, 34 | 3brtr3d 5154 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 Po wpo 5570 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 − cmin 11474 ℕ0cn0 12509 ℤcz 12596 ...cfz 13529 ..^cfzo 13676 ♯chash 14351 Word cword 14534 lastSclsw 14582 prefix cpfx 14690 Chaincchn 32933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-lsw 14583 df-concat 14591 df-s1 14616 df-substr 14661 df-pfx 14691 df-chn 32934 |
| This theorem is referenced by: chnso 32943 |
| Copyright terms: Public domain | W3C validator |