Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnlt Structured version   Visualization version   GIF version

Theorem chnlt 32998
Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnlt.1 (𝜑< Po 𝐴)
chnlt.2 (𝜑𝐶 ∈ ( < Chain𝐴))
chnlt.3 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
chnlt.4 (𝜑𝐼 ∈ (0..^𝐽))
Assertion
Ref Expression
chnlt (𝜑 → (𝐶𝐼) < (𝐶𝐽))

Proof of Theorem chnlt
StepHypRef Expression
1 chnlt.1 . . 3 (𝜑< Po 𝐴)
2 chnlt.2 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
3 chnlt.3 . . . . 5 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
4 fzofzp1 13785 . . . . 5 (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
53, 4syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
62, 5pfxchn 32994 . . 3 (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴))
7 chnlt.4 . . . 4 (𝜑𝐼 ∈ (0..^𝐽))
8 fzossz 13701 . . . . . . . 8 (0..^(♯‘𝐶)) ⊆ ℤ
98, 3sselid 3961 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
109zcnd 12703 . . . . . 6 (𝜑𝐽 ∈ ℂ)
11 1cnd 11235 . . . . . 6 (𝜑 → 1 ∈ ℂ)
122chnwrd 32992 . . . . . . 7 (𝜑𝐶 ∈ Word 𝐴)
13 pfxlen 14706 . . . . . . 7 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1412, 5, 13syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1510, 11, 14mvrraddd 11654 . . . . 5 (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽)
1615oveq2d 7426 . . . 4 (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽))
177, 16eleqtrrd 2838 . . 3 (𝜑𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)))
181, 6, 17chnub 32997 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1))))
19 fzo0ssnn0 13767 . . . . . 6 (0..^(♯‘𝐶)) ⊆ ℕ0
2019, 3sselid 3961 . . . . 5 (𝜑𝐽 ∈ ℕ0)
21 fzossfzop1 13764 . . . . 5 (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2220, 21syl 17 . . . 4 (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2322, 7sseldd 3964 . . 3 (𝜑𝐼 ∈ (0..^(𝐽 + 1)))
24 pfxfv 14705 . . 3 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
2512, 5, 23, 24syl3anc 1373 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
26 lencl 14556 . . . . . 6 (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0)
2712, 26syl 17 . . . . 5 (𝜑 → (♯‘𝐶) ∈ ℕ0)
28 fz0add1fz1 13756 . . . . 5 (((♯‘𝐶) ∈ ℕ0𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
2927, 3, 28syl2anc 584 . . . 4 (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
30 pfxfvlsw 14718 . . . 4 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3112, 29, 30syl2anc 584 . . 3 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3210, 11pncand 11600 . . . 4 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
3332fveq2d 6885 . . 3 (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶𝐽))
3431, 33eqtrd 2771 . 2 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶𝐽))
3518, 25, 343brtr3d 5155 1 (𝜑 → (𝐶𝐼) < (𝐶𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931   class class class wbr 5124   Po wpo 5564  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  0cn0 12506  cz 12593  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536  lastSclsw 14585   prefix cpfx 14693  Chaincchn 32989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-chn 32990
This theorem is referenced by:  chnso  32999
  Copyright terms: Public domain W3C validator