| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chnlt | Structured version Visualization version GIF version | ||
| Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
| chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) |
| chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
| Ref | Expression |
|---|---|
| chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
| 2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) | |
| 3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
| 4 | fzofzp1 13664 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 6 | 2, 5 | pfxchn 18516 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain 𝐴)) |
| 7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
| 8 | fzossz 13579 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
| 9 | 8, 3 | sselid 3927 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | 9 | zcnd 12578 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 11 | 1cnd 11107 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 12 | 2 | chnwrd 18514 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 13 | pfxlen 14591 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 15 | 10, 11, 14 | mvrraddd 11529 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
| 16 | 15 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
| 17 | 7, 16 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
| 18 | 1, 6, 17 | chnub 18528 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 19 | fzo0ssnn0 13646 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
| 20 | 19, 3 | sselid 3927 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| 21 | fzossfzop1 13643 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
| 23 | 22, 7 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 24 | pfxfv 14590 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
| 25 | 12, 5, 23, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 26 | lencl 14440 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 28 | fz0add1fz1 13635 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
| 29 | 27, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 30 | pfxfvlsw 14602 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
| 31 | 12, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 32 | 10, 11 | pncand 11473 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 33 | 32 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 34 | 31, 33 | eqtrd 2766 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 35 | 18, 25, 34 | 3brtr3d 5120 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 Po wpo 5520 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 − cmin 11344 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Word cword 14420 lastSclsw 14469 prefix cpfx 14578 Chain cchn 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-chn 18512 |
| This theorem is referenced by: chnso 18530 chnpof1 18536 |
| Copyright terms: Public domain | W3C validator |