Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnlt Structured version   Visualization version   GIF version

Theorem chnlt 32987
Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnlt.1 (𝜑< Po 𝐴)
chnlt.2 (𝜑𝐶 ∈ ( < Chain𝐴))
chnlt.3 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
chnlt.4 (𝜑𝐼 ∈ (0..^𝐽))
Assertion
Ref Expression
chnlt (𝜑 → (𝐶𝐼) < (𝐶𝐽))

Proof of Theorem chnlt
StepHypRef Expression
1 chnlt.1 . . 3 (𝜑< Po 𝐴)
2 chnlt.2 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
3 chnlt.3 . . . . 5 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
4 fzofzp1 13800 . . . . 5 (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
53, 4syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
62, 5pfxchn 32984 . . 3 (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴))
7 chnlt.4 . . . 4 (𝜑𝐼 ∈ (0..^𝐽))
8 fzossz 13716 . . . . . . . 8 (0..^(♯‘𝐶)) ⊆ ℤ
98, 3sselid 3993 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
109zcnd 12721 . . . . . 6 (𝜑𝐽 ∈ ℂ)
11 1cnd 11254 . . . . . 6 (𝜑 → 1 ∈ ℂ)
122chnwrd 32982 . . . . . . 7 (𝜑𝐶 ∈ Word 𝐴)
13 pfxlen 14718 . . . . . . 7 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1412, 5, 13syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1510, 11, 14mvrraddd 11673 . . . . 5 (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽)
1615oveq2d 7447 . . . 4 (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽))
177, 16eleqtrrd 2842 . . 3 (𝜑𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)))
181, 6, 17chnub 32986 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1))))
19 fzo0ssnn0 13782 . . . . . 6 (0..^(♯‘𝐶)) ⊆ ℕ0
2019, 3sselid 3993 . . . . 5 (𝜑𝐽 ∈ ℕ0)
21 fzossfzop1 13779 . . . . 5 (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2220, 21syl 17 . . . 4 (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2322, 7sseldd 3996 . . 3 (𝜑𝐼 ∈ (0..^(𝐽 + 1)))
24 pfxfv 14717 . . 3 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
2512, 5, 23, 24syl3anc 1370 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
26 lencl 14568 . . . . . 6 (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0)
2712, 26syl 17 . . . . 5 (𝜑 → (♯‘𝐶) ∈ ℕ0)
28 fz0add1fz1 13771 . . . . 5 (((♯‘𝐶) ∈ ℕ0𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
2927, 3, 28syl2anc 584 . . . 4 (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
30 pfxfvlsw 14730 . . . 4 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3112, 29, 30syl2anc 584 . . 3 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3210, 11pncand 11619 . . . 4 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
3332fveq2d 6911 . . 3 (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶𝐽))
3431, 33eqtrd 2775 . 2 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶𝐽))
3518, 25, 343brtr3d 5179 1 (𝜑 → (𝐶𝐼) < (𝐶𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148   Po wpo 5595  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597   prefix cpfx 14705  Chaincchn 32979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-chn 32980
This theorem is referenced by:  chnso  32988
  Copyright terms: Public domain W3C validator