| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnlt | Structured version Visualization version GIF version | ||
| Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
| chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
| Ref | Expression |
|---|---|
| chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
| 2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
| 4 | fzofzp1 13732 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 6 | 2, 5 | pfxchn 32942 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴)) |
| 7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
| 8 | fzossz 13647 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
| 9 | 8, 3 | sselid 3947 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | 9 | zcnd 12646 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 11 | 1cnd 11176 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 12 | 2 | chnwrd 32940 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 13 | pfxlen 14655 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 15 | 10, 11, 14 | mvrraddd 11597 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
| 16 | 15 | oveq2d 7406 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
| 17 | 7, 16 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
| 18 | 1, 6, 17 | chnub 32945 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 19 | fzo0ssnn0 13714 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
| 20 | 19, 3 | sselid 3947 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| 21 | fzossfzop1 13711 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
| 23 | 22, 7 | sseldd 3950 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 24 | pfxfv 14654 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
| 25 | 12, 5, 23, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 26 | lencl 14505 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 28 | fz0add1fz1 13703 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
| 29 | 27, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 30 | pfxfvlsw 14667 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
| 31 | 12, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 32 | 10, 11 | pncand 11541 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 33 | 32 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 34 | 31, 33 | eqtrd 2765 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 35 | 18, 25, 34 | 3brtr3d 5141 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 Po wpo 5547 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 lastSclsw 14534 prefix cpfx 14642 Chaincchn 32937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-chn 32938 |
| This theorem is referenced by: chnso 32947 |
| Copyright terms: Public domain | W3C validator |