![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > chnlt | Structured version Visualization version GIF version |
Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
Ref | Expression |
---|---|
chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
4 | fzofzp1 13778 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
6 | 2, 5 | pfxchn 32882 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴)) |
7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
8 | fzossz 13700 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
9 | 8, 3 | sselid 3976 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
10 | 9 | zcnd 12713 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
11 | 1cnd 11250 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
12 | 2 | chnwrd 32880 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
13 | pfxlen 14686 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
14 | 12, 5, 13 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
15 | 10, 11, 14 | mvrraddd 11667 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
16 | 15 | oveq2d 7432 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
17 | 7, 16 | eleqtrrd 2829 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
18 | 1, 6, 17 | chnub 32884 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
19 | fzo0ssnn0 13761 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
20 | 19, 3 | sselid 3976 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
21 | fzossfzop1 13758 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
23 | 22, 7 | sseldd 3979 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
24 | pfxfv 14685 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
25 | 12, 5, 23, 24 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
26 | lencl 14536 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
28 | fz0add1fz1 13750 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
29 | 27, 3, 28 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
30 | pfxfvlsw 14698 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
31 | 12, 29, 30 | syl2anc 582 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
32 | 10, 11 | pncand 11613 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
33 | 32 | fveq2d 6897 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
34 | 31, 33 | eqtrd 2766 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
35 | 18, 25, 34 | 3brtr3d 5176 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5145 Po wpo 5584 ‘cfv 6546 (class class class)co 7416 0cc0 11149 1c1 11150 + caddc 11152 − cmin 11485 ℕ0cn0 12518 ℤcz 12604 ...cfz 13532 ..^cfzo 13675 ♯chash 14342 Word cword 14517 lastSclsw 14565 prefix cpfx 14673 Chaincchn 32877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-xnn0 12591 df-z 12605 df-uz 12869 df-rp 13023 df-fz 13533 df-fzo 13676 df-hash 14343 df-word 14518 df-lsw 14566 df-concat 14574 df-s1 14599 df-substr 14644 df-pfx 14674 df-chn 32878 |
This theorem is referenced by: chnso 32886 |
Copyright terms: Public domain | W3C validator |