Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnlt Structured version   Visualization version   GIF version

Theorem chnlt 32942
Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnlt.1 (𝜑< Po 𝐴)
chnlt.2 (𝜑𝐶 ∈ ( < Chain𝐴))
chnlt.3 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
chnlt.4 (𝜑𝐼 ∈ (0..^𝐽))
Assertion
Ref Expression
chnlt (𝜑 → (𝐶𝐼) < (𝐶𝐽))

Proof of Theorem chnlt
StepHypRef Expression
1 chnlt.1 . . 3 (𝜑< Po 𝐴)
2 chnlt.2 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
3 chnlt.3 . . . . 5 (𝜑𝐽 ∈ (0..^(♯‘𝐶)))
4 fzofzp1 13785 . . . . 5 (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
53, 4syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶)))
62, 5pfxchn 32938 . . 3 (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴))
7 chnlt.4 . . . 4 (𝜑𝐼 ∈ (0..^𝐽))
8 fzossz 13701 . . . . . . . 8 (0..^(♯‘𝐶)) ⊆ ℤ
98, 3sselid 3961 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
109zcnd 12706 . . . . . 6 (𝜑𝐽 ∈ ℂ)
11 1cnd 11238 . . . . . 6 (𝜑 → 1 ∈ ℂ)
122chnwrd 32936 . . . . . . 7 (𝜑𝐶 ∈ Word 𝐴)
13 pfxlen 14703 . . . . . . 7 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1412, 5, 13syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1))
1510, 11, 14mvrraddd 11657 . . . . 5 (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽)
1615oveq2d 7429 . . . 4 (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽))
177, 16eleqtrrd 2836 . . 3 (𝜑𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)))
181, 6, 17chnub 32941 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1))))
19 fzo0ssnn0 13767 . . . . . 6 (0..^(♯‘𝐶)) ⊆ ℕ0
2019, 3sselid 3961 . . . . 5 (𝜑𝐽 ∈ ℕ0)
21 fzossfzop1 13764 . . . . 5 (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2220, 21syl 17 . . . 4 (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1)))
2322, 7sseldd 3964 . . 3 (𝜑𝐼 ∈ (0..^(𝐽 + 1)))
24 pfxfv 14702 . . 3 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
2512, 5, 23, 24syl3anc 1372 . 2 (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶𝐼))
26 lencl 14553 . . . . . 6 (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0)
2712, 26syl 17 . . . . 5 (𝜑 → (♯‘𝐶) ∈ ℕ0)
28 fz0add1fz1 13756 . . . . 5 (((♯‘𝐶) ∈ ℕ0𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
2927, 3, 28syl2anc 584 . . . 4 (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶)))
30 pfxfvlsw 14715 . . . 4 ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3112, 29, 30syl2anc 584 . . 3 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1)))
3210, 11pncand 11603 . . . 4 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
3332fveq2d 6890 . . 3 (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶𝐽))
3431, 33eqtrd 2769 . 2 (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶𝐽))
3518, 25, 343brtr3d 5154 1 (𝜑 → (𝐶𝐼) < (𝐶𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wss 3931   class class class wbr 5123   Po wpo 5570  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140  cmin 11474  0cn0 12509  cz 12596  ...cfz 13529  ..^cfzo 13676  chash 14351  Word cword 14534  lastSclsw 14582   prefix cpfx 14690  Chaincchn 32933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-lsw 14583  df-concat 14591  df-s1 14616  df-substr 14661  df-pfx 14691  df-chn 32934
This theorem is referenced by:  chnso  32943
  Copyright terms: Public domain W3C validator