| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnlt | Structured version Visualization version GIF version | ||
| Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnlt.1 | ⊢ (𝜑 → < Po 𝐴) |
| chnlt.2 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| chnlt.3 | ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) |
| chnlt.4 | ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) |
| Ref | Expression |
|---|---|
| chnlt | ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnlt.1 | . . 3 ⊢ (𝜑 → < Po 𝐴) | |
| 2 | chnlt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 3 | chnlt.3 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) | |
| 4 | fzofzp1 13667 | . . . . 5 ⊢ (𝐽 ∈ (0..^(♯‘𝐶)) → (𝐽 + 1) ∈ (0...(♯‘𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (0...(♯‘𝐶))) |
| 6 | 2, 5 | pfxchn 32951 | . . 3 ⊢ (𝜑 → (𝐶 prefix (𝐽 + 1)) ∈ ( < Chain𝐴)) |
| 7 | chnlt.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) | |
| 8 | fzossz 13582 | . . . . . . . 8 ⊢ (0..^(♯‘𝐶)) ⊆ ℤ | |
| 9 | 8, 3 | sselid 3933 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | 9 | zcnd 12581 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 11 | 1cnd 11110 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 12 | 2 | chnwrd 32949 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| 13 | pfxlen 14590 | . . . . . . 7 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (♯‘(𝐶 prefix (𝐽 + 1))) = (𝐽 + 1)) |
| 15 | 10, 11, 14 | mvrraddd 11532 | . . . . 5 ⊢ (𝜑 → ((♯‘(𝐶 prefix (𝐽 + 1))) − 1) = 𝐽) |
| 16 | 15 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1)) = (0..^𝐽)) |
| 17 | 7, 16 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘(𝐶 prefix (𝐽 + 1))) − 1))) |
| 18 | 1, 6, 17 | chnub 32954 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) < (lastS‘(𝐶 prefix (𝐽 + 1)))) |
| 19 | fzo0ssnn0 13649 | . . . . . 6 ⊢ (0..^(♯‘𝐶)) ⊆ ℕ0 | |
| 20 | 19, 3 | sselid 3933 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
| 21 | fzossfzop1 13646 | . . . . 5 ⊢ (𝐽 ∈ ℕ0 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝐽) ⊆ (0..^(𝐽 + 1))) |
| 23 | 22, 7 | sseldd 3936 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0..^(𝐽 + 1))) |
| 24 | pfxfv 14589 | . . 3 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (0...(♯‘𝐶)) ∧ 𝐼 ∈ (0..^(𝐽 + 1))) → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) | |
| 25 | 12, 5, 23, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐶 prefix (𝐽 + 1))‘𝐼) = (𝐶‘𝐼)) |
| 26 | lencl 14440 | . . . . . 6 ⊢ (𝐶 ∈ Word 𝐴 → (♯‘𝐶) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 28 | fz0add1fz1 13638 | . . . . 5 ⊢ (((♯‘𝐶) ∈ ℕ0 ∧ 𝐽 ∈ (0..^(♯‘𝐶))) → (𝐽 + 1) ∈ (1...(♯‘𝐶))) | |
| 29 | 27, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 + 1) ∈ (1...(♯‘𝐶))) |
| 30 | pfxfvlsw 14601 | . . . 4 ⊢ ((𝐶 ∈ Word 𝐴 ∧ (𝐽 + 1) ∈ (1...(♯‘𝐶))) → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) | |
| 31 | 12, 29, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘((𝐽 + 1) − 1))) |
| 32 | 10, 11 | pncand 11476 | . . . 4 ⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 33 | 32 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐶‘((𝐽 + 1) − 1)) = (𝐶‘𝐽)) |
| 34 | 31, 33 | eqtrd 2764 | . 2 ⊢ (𝜑 → (lastS‘(𝐶 prefix (𝐽 + 1))) = (𝐶‘𝐽)) |
| 35 | 18, 25, 34 | 3brtr3d 5123 | 1 ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 Po wpo 5525 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 − cmin 11347 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 lastSclsw 14469 prefix cpfx 14577 Chaincchn 32946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-chn 32947 |
| This theorem is referenced by: chnso 32956 |
| Copyright terms: Public domain | W3C validator |