| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgbtwnid | Structured version Visualization version GIF version | ||
| Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
| ttgitvval.m | ⊢ − = (-g‘𝐻) |
| ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
| ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| ttgbtwnid.r | ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) |
| ttgbtwnid.2 | ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) |
| ttgbtwnid.1 | ⊢ (𝜑 → 𝐻 ∈ ℂMod) |
| ttgbtwnid.y | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) |
| Ref | Expression |
|---|---|
| ttgbtwnid | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝜑) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) | |
| 3 | ttgbtwnid.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ ℂMod) | |
| 4 | clmlmod 24965 | . . . . . . . . 9 ⊢ (𝐻 ∈ ℂMod → 𝐻 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ LMod) |
| 6 | ttgelitv.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | ttgitvval.b | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐻) | |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 9 | ttgitvval.m | . . . . . . . . 9 ⊢ − = (-g‘𝐻) | |
| 10 | 7, 8, 9 | lmodsubid 20825 | . . . . . . . 8 ⊢ ((𝐻 ∈ LMod ∧ 𝑋 ∈ 𝑃) → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 12 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 13 | 12 | oveq2d 7365 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (𝑋 − 𝑋)) = (𝑘 · (0g‘𝐻))) |
| 14 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝐻 ∈ LMod) |
| 15 | ttgbtwnid.2 | . . . . . . . 8 ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) | |
| 16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (0[,]1) ⊆ 𝑅) |
| 17 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ (0[,]1)) | |
| 18 | 16, 17 | sseldd 3936 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ 𝑅) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (Scalar‘𝐻) = (Scalar‘𝐻) | |
| 20 | ttgitvval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝐻) | |
| 21 | ttgbtwnid.r | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) | |
| 22 | 19, 20, 21, 8 | lmodvs0 20799 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑘 ∈ 𝑅) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
| 23 | 14, 18, 22 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
| 24 | 2, 13, 23 | 3eqtrd 2768 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (0g‘𝐻)) |
| 25 | ttgelitv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 26 | 7, 8, 9 | lmodsubeq0 20824 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
| 27 | 5, 25, 6, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
| 28 | 27 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 − 𝑋) = (0g‘𝐻)) → 𝑌 = 𝑋) |
| 29 | 1, 24, 28 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑌 = 𝑋) |
| 30 | 29 | eqcomd 2735 | . 2 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑋 = 𝑌) |
| 31 | ttgbtwnid.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) | |
| 32 | ttgval.n | . . . 4 ⊢ 𝐺 = (toTG‘𝐻) | |
| 33 | ttgitvval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 34 | 32, 33, 7, 9, 20, 6, 6, 3, 25 | ttgelitv 28828 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋)))) |
| 35 | 31, 34 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) |
| 36 | 30, 35 | r19.29a 3137 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 [,]cicc 13251 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 -gcsg 18814 LModclmod 20763 ℂModcclm 24960 Itvcitv 28378 toTGcttg 28818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20765 df-clm 24961 df-itv 28380 df-lng 28381 df-ttg 28819 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |