MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgbtwnid Structured version   Visualization version   GIF version

Theorem ttgbtwnid 28829
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgbtwnid.1 (𝜑𝐻 ∈ ℂMod)
ttgbtwnid.y (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
ttgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem ttgbtwnid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝜑)
2 simpr 484 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3 ttgbtwnid.1 . . . . . . . . 9 (𝜑𝐻 ∈ ℂMod)
4 clmlmod 24965 . . . . . . . . 9 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
53, 4syl 17 . . . . . . . 8 (𝜑𝐻 ∈ LMod)
6 ttgelitv.x . . . . . . . 8 (𝜑𝑋𝑃)
7 ttgitvval.b . . . . . . . . 9 𝑃 = (Base‘𝐻)
8 eqid 2729 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
9 ttgitvval.m . . . . . . . . 9 = (-g𝐻)
107, 8, 9lmodsubid 20825 . . . . . . . 8 ((𝐻 ∈ LMod ∧ 𝑋𝑃) → (𝑋 𝑋) = (0g𝐻))
115, 6, 10syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 𝑋) = (0g𝐻))
1211ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑋 𝑋) = (0g𝐻))
1312oveq2d 7365 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (𝑋 𝑋)) = (𝑘 · (0g𝐻)))
145ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝐻 ∈ LMod)
15 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
1615ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (0[,]1) ⊆ 𝑅)
17 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘 ∈ (0[,]1))
1816, 17sseldd 3936 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘𝑅)
19 eqid 2729 . . . . . . 7 (Scalar‘𝐻) = (Scalar‘𝐻)
20 ttgitvval.s . . . . . . 7 · = ( ·𝑠𝐻)
21 ttgbtwnid.r . . . . . . 7 𝑅 = (Base‘(Scalar‘𝐻))
2219, 20, 21, 8lmodvs0 20799 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑘𝑅) → (𝑘 · (0g𝐻)) = (0g𝐻))
2314, 18, 22syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (0g𝐻)) = (0g𝐻))
242, 13, 233eqtrd 2768 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (0g𝐻))
25 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
267, 8, 9lmodsubeq0 20824 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃) → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
275, 25, 6, 26syl3anc 1373 . . . . 5 (𝜑 → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
2827biimpa 476 . . . 4 ((𝜑 ∧ (𝑌 𝑋) = (0g𝐻)) → 𝑌 = 𝑋)
291, 24, 28syl2anc 584 . . 3 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑌 = 𝑋)
3029eqcomd 2735 . 2 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑋 = 𝑌)
31 ttgbtwnid.y . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
32 ttgval.n . . . 4 𝐺 = (toTG‘𝐻)
33 ttgitvval.i . . . 4 𝐼 = (Itv‘𝐺)
3432, 33, 7, 9, 20, 6, 6, 3, 25ttgelitv 28828 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋))))
3531, 34mpbid 232 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3630, 35r19.29a 3137 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3903  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  [,]cicc 13251  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  -gcsg 18814  LModclmod 20763  ℂModcclm 24960  Itvcitv 28378  toTGcttg 28818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-clm 24961  df-itv 28380  df-lng 28381  df-ttg 28819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator