MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgbtwnid Structured version   Visualization version   GIF version

Theorem ttgbtwnid 26597
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgbtwnid.1 (𝜑𝐻 ∈ ℂMod)
ttgbtwnid.y (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
ttgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem ttgbtwnid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝜑)
2 simpr 485 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3 ttgbtwnid.1 . . . . . . . . 9 (𝜑𝐻 ∈ ℂMod)
4 clmlmod 23598 . . . . . . . . 9 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
53, 4syl 17 . . . . . . . 8 (𝜑𝐻 ∈ LMod)
6 ttgelitv.x . . . . . . . 8 (𝜑𝑋𝑃)
7 ttgitvval.b . . . . . . . . 9 𝑃 = (Base‘𝐻)
8 eqid 2818 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
9 ttgitvval.m . . . . . . . . 9 = (-g𝐻)
107, 8, 9lmodsubid 19623 . . . . . . . 8 ((𝐻 ∈ LMod ∧ 𝑋𝑃) → (𝑋 𝑋) = (0g𝐻))
115, 6, 10syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 𝑋) = (0g𝐻))
1211ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑋 𝑋) = (0g𝐻))
1312oveq2d 7161 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (𝑋 𝑋)) = (𝑘 · (0g𝐻)))
145ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝐻 ∈ LMod)
15 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
1615ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (0[,]1) ⊆ 𝑅)
17 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘 ∈ (0[,]1))
1816, 17sseldd 3965 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘𝑅)
19 eqid 2818 . . . . . . 7 (Scalar‘𝐻) = (Scalar‘𝐻)
20 ttgitvval.s . . . . . . 7 · = ( ·𝑠𝐻)
21 ttgbtwnid.r . . . . . . 7 𝑅 = (Base‘(Scalar‘𝐻))
2219, 20, 21, 8lmodvs0 19597 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑘𝑅) → (𝑘 · (0g𝐻)) = (0g𝐻))
2314, 18, 22syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (0g𝐻)) = (0g𝐻))
242, 13, 233eqtrd 2857 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (0g𝐻))
25 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
267, 8, 9lmodsubeq0 19622 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃) → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
275, 25, 6, 26syl3anc 1363 . . . . 5 (𝜑 → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
2827biimpa 477 . . . 4 ((𝜑 ∧ (𝑌 𝑋) = (0g𝐻)) → 𝑌 = 𝑋)
291, 24, 28syl2anc 584 . . 3 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑌 = 𝑋)
3029eqcomd 2824 . 2 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑋 = 𝑌)
31 ttgbtwnid.y . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
32 ttgval.n . . . 4 𝐺 = (toTG‘𝐻)
33 ttgitvval.i . . . 4 𝐼 = (Itv‘𝐺)
3432, 33, 7, 9, 20, 6, 6, 3, 25ttgelitv 26596 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋))))
3531, 34mpbid 233 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3630, 35r19.29a 3286 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  wss 3933  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  [,]cicc 12729  Basecbs 16471  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  -gcsg 18043  LModclmod 19563  ℂModcclm 23593  Itvcitv 26149  toTGcttg 26586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-dec 12087  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mgp 19169  df-ring 19228  df-lmod 19565  df-clm 23594  df-itv 26151  df-lng 26152  df-ttg 26587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator