Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttgbtwnid | Structured version Visualization version GIF version |
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
ttgbtwnid.r | ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) |
ttgbtwnid.2 | ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) |
ttgbtwnid.1 | ⊢ (𝜑 → 𝐻 ∈ ℂMod) |
ttgbtwnid.y | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) |
Ref | Expression |
---|---|
ttgbtwnid | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝜑) | |
2 | simpr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) | |
3 | ttgbtwnid.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ ℂMod) | |
4 | clmlmod 23822 | . . . . . . . . 9 ⊢ (𝐻 ∈ ℂMod → 𝐻 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ LMod) |
6 | ttgelitv.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | ttgitvval.b | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐻) | |
8 | eqid 2739 | . . . . . . . . 9 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
9 | ttgitvval.m | . . . . . . . . 9 ⊢ − = (-g‘𝐻) | |
10 | 7, 8, 9 | lmodsubid 19816 | . . . . . . . 8 ⊢ ((𝐻 ∈ LMod ∧ 𝑋 ∈ 𝑃) → (𝑋 − 𝑋) = (0g‘𝐻)) |
11 | 5, 6, 10 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐻)) |
12 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑋 − 𝑋) = (0g‘𝐻)) |
13 | 12 | oveq2d 7189 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (𝑋 − 𝑋)) = (𝑘 · (0g‘𝐻))) |
14 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝐻 ∈ LMod) |
15 | ttgbtwnid.2 | . . . . . . . 8 ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) | |
16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (0[,]1) ⊆ 𝑅) |
17 | simplr 769 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ (0[,]1)) | |
18 | 16, 17 | sseldd 3879 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ 𝑅) |
19 | eqid 2739 | . . . . . . 7 ⊢ (Scalar‘𝐻) = (Scalar‘𝐻) | |
20 | ttgitvval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝐻) | |
21 | ttgbtwnid.r | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) | |
22 | 19, 20, 21, 8 | lmodvs0 19790 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑘 ∈ 𝑅) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
23 | 14, 18, 22 | syl2anc 587 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
24 | 2, 13, 23 | 3eqtrd 2778 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (0g‘𝐻)) |
25 | ttgelitv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
26 | 7, 8, 9 | lmodsubeq0 19815 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
27 | 5, 25, 6, 26 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
28 | 27 | biimpa 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 − 𝑋) = (0g‘𝐻)) → 𝑌 = 𝑋) |
29 | 1, 24, 28 | syl2anc 587 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑌 = 𝑋) |
30 | 29 | eqcomd 2745 | . 2 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑋 = 𝑌) |
31 | ttgbtwnid.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) | |
32 | ttgval.n | . . . 4 ⊢ 𝐺 = (toTG‘𝐻) | |
33 | ttgitvval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
34 | 32, 33, 7, 9, 20, 6, 6, 3, 25 | ttgelitv 26832 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋)))) |
35 | 31, 34 | mpbid 235 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) |
36 | 30, 35 | r19.29a 3200 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3055 ⊆ wss 3844 ‘cfv 6340 (class class class)co 7173 0cc0 10618 1c1 10619 [,]cicc 12827 Basecbs 16589 Scalarcsca 16674 ·𝑠 cvsca 16675 0gc0g 16819 -gcsg 18224 LModclmod 19756 ℂModcclm 23817 Itvcitv 26385 toTGcttg 26822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-dec 12183 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-plusg 16684 df-0g 16821 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-grp 18225 df-minusg 18226 df-sbg 18227 df-mgp 19362 df-ring 19421 df-lmod 19758 df-clm 23818 df-itv 26387 df-lng 26388 df-ttg 26823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |