![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttgbtwnid | Structured version Visualization version GIF version |
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
ttgbtwnid.r | ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) |
ttgbtwnid.2 | ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) |
ttgbtwnid.1 | ⊢ (𝜑 → 𝐻 ∈ ℂMod) |
ttgbtwnid.y | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) |
Ref | Expression |
---|---|
ttgbtwnid | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝜑) | |
2 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) | |
3 | ttgbtwnid.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ ℂMod) | |
4 | clmlmod 25119 | . . . . . . . . 9 ⊢ (𝐻 ∈ ℂMod → 𝐻 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ LMod) |
6 | ttgelitv.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | ttgitvval.b | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐻) | |
8 | eqid 2740 | . . . . . . . . 9 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
9 | ttgitvval.m | . . . . . . . . 9 ⊢ − = (-g‘𝐻) | |
10 | 7, 8, 9 | lmodsubid 20942 | . . . . . . . 8 ⊢ ((𝐻 ∈ LMod ∧ 𝑋 ∈ 𝑃) → (𝑋 − 𝑋) = (0g‘𝐻)) |
11 | 5, 6, 10 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐻)) |
12 | 11 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑋 − 𝑋) = (0g‘𝐻)) |
13 | 12 | oveq2d 7464 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (𝑋 − 𝑋)) = (𝑘 · (0g‘𝐻))) |
14 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝐻 ∈ LMod) |
15 | ttgbtwnid.2 | . . . . . . . 8 ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) | |
16 | 15 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (0[,]1) ⊆ 𝑅) |
17 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ (0[,]1)) | |
18 | 16, 17 | sseldd 4009 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ 𝑅) |
19 | eqid 2740 | . . . . . . 7 ⊢ (Scalar‘𝐻) = (Scalar‘𝐻) | |
20 | ttgitvval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝐻) | |
21 | ttgbtwnid.r | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) | |
22 | 19, 20, 21, 8 | lmodvs0 20916 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑘 ∈ 𝑅) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
23 | 14, 18, 22 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
24 | 2, 13, 23 | 3eqtrd 2784 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (0g‘𝐻)) |
25 | ttgelitv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
26 | 7, 8, 9 | lmodsubeq0 20941 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
27 | 5, 25, 6, 26 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
28 | 27 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 − 𝑋) = (0g‘𝐻)) → 𝑌 = 𝑋) |
29 | 1, 24, 28 | syl2anc 583 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑌 = 𝑋) |
30 | 29 | eqcomd 2746 | . 2 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑋 = 𝑌) |
31 | ttgbtwnid.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) | |
32 | ttgval.n | . . . 4 ⊢ 𝐺 = (toTG‘𝐻) | |
33 | ttgitvval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
34 | 32, 33, 7, 9, 20, 6, 6, 3, 25 | ttgelitv 28915 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋)))) |
35 | 31, 34 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) |
36 | 30, 35 | r19.29a 3168 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 [,]cicc 13410 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 -gcsg 18975 LModclmod 20880 ℂModcclm 25114 Itvcitv 28459 toTGcttg 28899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-clm 25115 df-itv 28461 df-lng 28462 df-ttg 28900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |