MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgbtwnid Structured version   Visualization version   GIF version

Theorem ttgbtwnid 26657
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgbtwnid.1 (𝜑𝐻 ∈ ℂMod)
ttgbtwnid.y (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
ttgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem ttgbtwnid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝜑)
2 simpr 487 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3 ttgbtwnid.1 . . . . . . . . 9 (𝜑𝐻 ∈ ℂMod)
4 clmlmod 23651 . . . . . . . . 9 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
53, 4syl 17 . . . . . . . 8 (𝜑𝐻 ∈ LMod)
6 ttgelitv.x . . . . . . . 8 (𝜑𝑋𝑃)
7 ttgitvval.b . . . . . . . . 9 𝑃 = (Base‘𝐻)
8 eqid 2820 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
9 ttgitvval.m . . . . . . . . 9 = (-g𝐻)
107, 8, 9lmodsubid 19670 . . . . . . . 8 ((𝐻 ∈ LMod ∧ 𝑋𝑃) → (𝑋 𝑋) = (0g𝐻))
115, 6, 10syl2anc 586 . . . . . . 7 (𝜑 → (𝑋 𝑋) = (0g𝐻))
1211ad2antrr 724 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑋 𝑋) = (0g𝐻))
1312oveq2d 7149 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (𝑋 𝑋)) = (𝑘 · (0g𝐻)))
145ad2antrr 724 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝐻 ∈ LMod)
15 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
1615ad2antrr 724 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (0[,]1) ⊆ 𝑅)
17 simplr 767 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘 ∈ (0[,]1))
1816, 17sseldd 3947 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘𝑅)
19 eqid 2820 . . . . . . 7 (Scalar‘𝐻) = (Scalar‘𝐻)
20 ttgitvval.s . . . . . . 7 · = ( ·𝑠𝐻)
21 ttgbtwnid.r . . . . . . 7 𝑅 = (Base‘(Scalar‘𝐻))
2219, 20, 21, 8lmodvs0 19644 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑘𝑅) → (𝑘 · (0g𝐻)) = (0g𝐻))
2314, 18, 22syl2anc 586 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (0g𝐻)) = (0g𝐻))
242, 13, 233eqtrd 2859 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (0g𝐻))
25 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
267, 8, 9lmodsubeq0 19669 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃) → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
275, 25, 6, 26syl3anc 1367 . . . . 5 (𝜑 → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
2827biimpa 479 . . . 4 ((𝜑 ∧ (𝑌 𝑋) = (0g𝐻)) → 𝑌 = 𝑋)
291, 24, 28syl2anc 586 . . 3 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑌 = 𝑋)
3029eqcomd 2826 . 2 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑋 = 𝑌)
31 ttgbtwnid.y . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
32 ttgval.n . . . 4 𝐺 = (toTG‘𝐻)
33 ttgitvval.i . . . 4 𝐼 = (Itv‘𝐺)
3432, 33, 7, 9, 20, 6, 6, 3, 25ttgelitv 26656 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋))))
3531, 34mpbid 234 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3630, 35r19.29a 3276 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3126  wss 3913  cfv 6331  (class class class)co 7133  0cc0 10515  1c1 10516  [,]cicc 12720  Basecbs 16462  Scalarcsca 16547   ·𝑠 cvsca 16548  0gc0g 16692  -gcsg 18084  LModclmod 19610  ℂModcclm 23646  Itvcitv 26209  toTGcttg 26646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-dec 12078  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mgp 19219  df-ring 19278  df-lmod 19612  df-clm 23647  df-itv 26211  df-lng 26212  df-ttg 26647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator