| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgbtwnid | Structured version Visualization version GIF version | ||
| Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
| ttgitvval.m | ⊢ − = (-g‘𝐻) |
| ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
| ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| ttgbtwnid.r | ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) |
| ttgbtwnid.2 | ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) |
| ttgbtwnid.1 | ⊢ (𝜑 → 𝐻 ∈ ℂMod) |
| ttgbtwnid.y | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) |
| Ref | Expression |
|---|---|
| ttgbtwnid | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝜑) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) | |
| 3 | ttgbtwnid.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ ℂMod) | |
| 4 | clmlmod 24994 | . . . . . . . . 9 ⊢ (𝐻 ∈ ℂMod → 𝐻 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ LMod) |
| 6 | ttgelitv.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | ttgitvval.b | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐻) | |
| 8 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 9 | ttgitvval.m | . . . . . . . . 9 ⊢ − = (-g‘𝐻) | |
| 10 | 7, 8, 9 | lmodsubid 20855 | . . . . . . . 8 ⊢ ((𝐻 ∈ LMod ∧ 𝑋 ∈ 𝑃) → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 12 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑋 − 𝑋) = (0g‘𝐻)) |
| 13 | 12 | oveq2d 7362 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (𝑋 − 𝑋)) = (𝑘 · (0g‘𝐻))) |
| 14 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝐻 ∈ LMod) |
| 15 | ttgbtwnid.2 | . . . . . . . 8 ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) | |
| 16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (0[,]1) ⊆ 𝑅) |
| 17 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ (0[,]1)) | |
| 18 | 16, 17 | sseldd 3930 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑘 ∈ 𝑅) |
| 19 | eqid 2731 | . . . . . . 7 ⊢ (Scalar‘𝐻) = (Scalar‘𝐻) | |
| 20 | ttgitvval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝐻) | |
| 21 | ttgbtwnid.r | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) | |
| 22 | 19, 20, 21, 8 | lmodvs0 20829 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑘 ∈ 𝑅) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
| 23 | 14, 18, 22 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑘 · (0g‘𝐻)) = (0g‘𝐻)) |
| 24 | 2, 13, 23 | 3eqtrd 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → (𝑌 − 𝑋) = (0g‘𝐻)) |
| 25 | ttgelitv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 26 | 7, 8, 9 | lmodsubeq0 20854 | . . . . . 6 ⊢ ((𝐻 ∈ LMod ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
| 27 | 5, 25, 6, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑌 − 𝑋) = (0g‘𝐻) ↔ 𝑌 = 𝑋)) |
| 28 | 27 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 − 𝑋) = (0g‘𝐻)) → 𝑌 = 𝑋) |
| 29 | 1, 24, 28 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑌 = 𝑋) |
| 30 | 29 | eqcomd 2737 | . 2 ⊢ (((𝜑 ∧ 𝑘 ∈ (0[,]1)) ∧ (𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) → 𝑋 = 𝑌) |
| 31 | ttgbtwnid.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) | |
| 32 | ttgval.n | . . . 4 ⊢ 𝐺 = (toTG‘𝐻) | |
| 33 | ttgitvval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 34 | 32, 33, 7, 9, 20, 6, 6, 3, 25 | ttgelitv 28861 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋)))) |
| 35 | 31, 34 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 − 𝑋) = (𝑘 · (𝑋 − 𝑋))) |
| 36 | 30, 35 | r19.29a 3140 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 [,]cicc 13248 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 -gcsg 18848 LModclmod 20793 ℂModcclm 24989 Itvcitv 28411 toTGcttg 28851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-lmod 20795 df-clm 24990 df-itv 28413 df-lng 28414 df-ttg 28852 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |