![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvs2 | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.) |
Ref | Expression |
---|---|
clmvs1.v | β’ π = (Baseβπ) |
clmvs1.s | β’ Β· = ( Β·π βπ) |
clmvs2.a | β’ + = (+gβπ) |
Ref | Expression |
---|---|
clmvs2 | β’ ((π β βMod β§ π΄ β π) β (π΄ + π΄) = (2 Β· π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12280 | . . . 4 β’ 2 = (1 + 1) | |
2 | 1 | oveq1i 7422 | . . 3 β’ (2 Β· π΄) = ((1 + 1) Β· π΄) |
3 | 2 | a1i 11 | . 2 β’ ((π β βMod β§ π΄ β π) β (2 Β· π΄) = ((1 + 1) Β· π΄)) |
4 | simpl 482 | . . 3 β’ ((π β βMod β§ π΄ β π) β π β βMod) | |
5 | eqid 2731 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
6 | 5 | clm1 24821 | . . . . 5 β’ (π β βMod β 1 = (1rβ(Scalarβπ))) |
7 | clmlmod 24815 | . . . . . 6 β’ (π β βMod β π β LMod) | |
8 | eqid 2731 | . . . . . . 7 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
9 | eqid 2731 | . . . . . . 7 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
10 | 5, 8, 9 | lmod1cl 20644 | . . . . . 6 β’ (π β LMod β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
11 | 7, 10 | syl 17 | . . . . 5 β’ (π β βMod β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
12 | 6, 11 | eqeltrd 2832 | . . . 4 β’ (π β βMod β 1 β (Baseβ(Scalarβπ))) |
13 | 12 | adantr 480 | . . 3 β’ ((π β βMod β§ π΄ β π) β 1 β (Baseβ(Scalarβπ))) |
14 | simpr 484 | . . 3 β’ ((π β βMod β§ π΄ β π) β π΄ β π) | |
15 | clmvs1.v | . . . 4 β’ π = (Baseβπ) | |
16 | clmvs1.s | . . . 4 β’ Β· = ( Β·π βπ) | |
17 | clmvs2.a | . . . 4 β’ + = (+gβπ) | |
18 | 15, 5, 16, 8, 17 | clmvsdir 24839 | . . 3 β’ ((π β βMod β§ (1 β (Baseβ(Scalarβπ)) β§ 1 β (Baseβ(Scalarβπ)) β§ π΄ β π)) β ((1 + 1) Β· π΄) = ((1 Β· π΄) + (1 Β· π΄))) |
19 | 4, 13, 13, 14, 18 | syl13anc 1371 | . 2 β’ ((π β βMod β§ π΄ β π) β ((1 + 1) Β· π΄) = ((1 Β· π΄) + (1 Β· π΄))) |
20 | 15, 16 | clmvs1 24841 | . . 3 β’ ((π β βMod β§ π΄ β π) β (1 Β· π΄) = π΄) |
21 | 20, 20 | oveq12d 7430 | . 2 β’ ((π β βMod β§ π΄ β π) β ((1 Β· π΄) + (1 Β· π΄)) = (π΄ + π΄)) |
22 | 3, 19, 21 | 3eqtrrd 2776 | 1 β’ ((π β βMod β§ π΄ β π) β (π΄ + π΄) = (2 Β· π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 1c1 11114 + caddc 11116 2c2 12272 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Β·π cvsca 17206 1rcur 20076 LModclmod 20615 βModcclm 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-subg 19040 df-cmn 19692 df-mgp 20030 df-ur 20077 df-ring 20130 df-cring 20131 df-subrg 20460 df-lmod 20617 df-cnfld 21146 df-clm 24811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |