MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvs2 Structured version   Visualization version   GIF version

Theorem clmvs2 24363
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
clmvs1.v 𝑉 = (Base‘𝑊)
clmvs1.s · = ( ·𝑠𝑊)
clmvs2.a + = (+g𝑊)
Assertion
Ref Expression
clmvs2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + 𝐴) = (2 · 𝐴))

Proof of Theorem clmvs2
StepHypRef Expression
1 df-2 12142 . . . 4 2 = (1 + 1)
21oveq1i 7352 . . 3 (2 · 𝐴) = ((1 + 1) · 𝐴)
32a1i 11 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (2 · 𝐴) = ((1 + 1) · 𝐴))
4 simpl 484 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 𝑊 ∈ ℂMod)
5 eqid 2737 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
65clm1 24342 . . . . 5 (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊)))
7 clmlmod 24336 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
8 eqid 2737 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 eqid 2737 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
105, 8, 9lmod1cl 20256 . . . . . 6 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
117, 10syl 17 . . . . 5 (𝑊 ∈ ℂMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
126, 11eqeltrd 2838 . . . 4 (𝑊 ∈ ℂMod → 1 ∈ (Base‘(Scalar‘𝑊)))
1312adantr 482 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 1 ∈ (Base‘(Scalar‘𝑊)))
14 simpr 486 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 𝐴𝑉)
15 clmvs1.v . . . 4 𝑉 = (Base‘𝑊)
16 clmvs1.s . . . 4 · = ( ·𝑠𝑊)
17 clmvs2.a . . . 4 + = (+g𝑊)
1815, 5, 16, 8, 17clmvsdir 24360 . . 3 ((𝑊 ∈ ℂMod ∧ (1 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉)) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
194, 13, 13, 14, 18syl13anc 1372 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
2015, 16clmvs1 24362 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (1 · 𝐴) = 𝐴)
2120, 20oveq12d 7360 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
223, 19, 213eqtrrd 2782 1 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + 𝐴) = (2 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cfv 6484  (class class class)co 7342  1c1 10978   + caddc 10980  2c2 12134  Basecbs 17010  +gcplusg 17060  Scalarcsca 17063   ·𝑠 cvsca 17064  1rcur 19832  LModclmod 20229  ℂModcclm 24331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-addf 11056  ax-mulf 11057
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-fz 13346  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-subg 18849  df-cmn 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-subrg 20127  df-lmod 20231  df-cnfld 20704  df-clm 24332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator