Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvs2 Structured version   Visualization version   GIF version

Theorem clmvs2 23312
 Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
clmvs1.v 𝑉 = (Base‘𝑊)
clmvs1.s · = ( ·𝑠𝑊)
clmvs2.a + = (+g𝑊)
Assertion
Ref Expression
clmvs2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + 𝐴) = (2 · 𝐴))

Proof of Theorem clmvs2
StepHypRef Expression
1 df-2 11443 . . . 4 2 = (1 + 1)
21oveq1i 6934 . . 3 (2 · 𝐴) = ((1 + 1) · 𝐴)
32a1i 11 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (2 · 𝐴) = ((1 + 1) · 𝐴))
4 simpl 476 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 𝑊 ∈ ℂMod)
5 eqid 2778 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
65clm1 23291 . . . . 5 (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊)))
7 clmlmod 23285 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
8 eqid 2778 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 eqid 2778 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
105, 8, 9lmod1cl 19293 . . . . . 6 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
117, 10syl 17 . . . . 5 (𝑊 ∈ ℂMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
126, 11eqeltrd 2859 . . . 4 (𝑊 ∈ ℂMod → 1 ∈ (Base‘(Scalar‘𝑊)))
1312adantr 474 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 1 ∈ (Base‘(Scalar‘𝑊)))
14 simpr 479 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → 𝐴𝑉)
15 clmvs1.v . . . 4 𝑉 = (Base‘𝑊)
16 clmvs1.s . . . 4 · = ( ·𝑠𝑊)
17 clmvs2.a . . . 4 + = (+g𝑊)
1815, 5, 16, 8, 17clmvsdir 23309 . . 3 ((𝑊 ∈ ℂMod ∧ (1 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉)) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
194, 13, 13, 14, 18syl13anc 1440 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
2015, 16clmvs1 23311 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (1 · 𝐴) = 𝐴)
2120, 20oveq12d 6942 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
223, 19, 213eqtrrd 2819 1 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + 𝐴) = (2 · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ‘cfv 6137  (class class class)co 6924  1c1 10275   + caddc 10277  2c2 11435  Basecbs 16266  +gcplusg 16349  Scalarcsca 16352   ·𝑠 cvsca 16353  1rcur 18899  LModclmod 19266  ℂModcclm 23280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-addf 10353  ax-mulf 10354 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-subg 17986  df-cmn 18592  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-subrg 19181  df-lmod 19268  df-cnfld 20154  df-clm 23281 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator