Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvs2 | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.) |
Ref | Expression |
---|---|
clmvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvs2.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmvs2 | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + 𝐴) = (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12142 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7352 | . . 3 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (2 · 𝐴) = ((1 + 1) · 𝐴)) |
4 | simpl 484 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
5 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | 5 | clm1 24342 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊))) |
7 | clmlmod 24336 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
8 | eqid 2737 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
9 | eqid 2737 | . . . . . . 7 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
10 | 5, 8, 9 | lmod1cl 20256 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
12 | 6, 11 | eqeltrd 2838 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 1 ∈ (Base‘(Scalar‘𝑊))) |
13 | 12 | adantr 482 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → 1 ∈ (Base‘(Scalar‘𝑊))) |
14 | simpr 486 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
15 | clmvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
16 | clmvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | clmvs2.a | . . . 4 ⊢ + = (+g‘𝑊) | |
18 | 15, 5, 16, 8, 17 | clmvsdir 24360 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (1 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ 𝑉)) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴))) |
19 | 4, 13, 13, 14, 18 | syl13anc 1372 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴))) |
20 | 15, 16 | clmvs1 24362 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (1 · 𝐴) = 𝐴) |
21 | 20, 20 | oveq12d 7360 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
22 | 3, 19, 21 | 3eqtrrd 2782 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + 𝐴) = (2 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ‘cfv 6484 (class class class)co 7342 1c1 10978 + caddc 10980 2c2 12134 Basecbs 17010 +gcplusg 17060 Scalarcsca 17063 ·𝑠 cvsca 17064 1rcur 19832 LModclmod 20229 ℂModcclm 24331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-addf 11056 ax-mulf 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-subg 18849 df-cmn 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-subrg 20127 df-lmod 20231 df-cnfld 20704 df-clm 24332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |