Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmodscmulexp | Structured version Visualization version GIF version |
Description: The scalar product of a vector with powers of i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains i. (Contributed by AV, 18-Oct-2021.) |
Ref | Expression |
---|---|
cmodscexp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cmodscexp.k | ⊢ 𝐾 = (Base‘𝐹) |
cmodscmulexp.x | ⊢ 𝑋 = (Base‘𝑊) |
cmodscmulexp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
cmodscmulexp | ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 23758 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | 1 | adantr 485 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → 𝑊 ∈ LMod) |
3 | simp1 1134 | . . . 4 ⊢ ((i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ) → i ∈ 𝐾) | |
4 | 3 | anim2i 620 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾)) |
5 | simpr3 1194 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ) | |
6 | cmodscexp.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | cmodscexp.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 6, 7 | cmodscexp 23812 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) |
9 | 4, 5, 8 | syl2anc 588 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → (i↑𝑁) ∈ 𝐾) |
10 | simpr2 1193 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → 𝐵 ∈ 𝑋) | |
11 | cmodscmulexp.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
12 | cmodscmulexp.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | 11, 6, 12, 7 | lmodvscl 19709 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (i↑𝑁) ∈ 𝐾 ∧ 𝐵 ∈ 𝑋) → ((i↑𝑁) · 𝐵) ∈ 𝑋) |
14 | 2, 9, 10, 13 | syl3anc 1369 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6333 (class class class)co 7148 ici 10567 ℕcn 11664 ↑cexp 13469 Basecbs 16531 Scalarcsca 16616 ·𝑠 cvsca 16617 LModclmod 19692 ℂModcclm 23753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-addf 10644 ax-mulf 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-7 11732 df-8 11733 df-9 11734 df-n0 11925 df-z 12011 df-dec 12128 df-uz 12273 df-fz 12930 df-seq 13409 df-exp 13470 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-ress 16539 df-plusg 16626 df-mulr 16627 df-starv 16628 df-tset 16632 df-ple 16633 df-ds 16635 df-unif 16636 df-0g 16763 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-submnd 18013 df-grp 18162 df-mulg 18282 df-cmn 18965 df-mgp 19298 df-ur 19310 df-ring 19357 df-cring 19358 df-subrg 19591 df-lmod 19694 df-cnfld 20157 df-clm 23754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |