MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsneg Structured version   Visualization version   GIF version

Theorem clmvsneg 24976
Description: Multiplication of a vector by a negated scalar. (lmodvsneg 20788 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
clmvsneg.b 𝐵 = (Base‘𝑊)
clmvsneg.f 𝐹 = (Scalar‘𝑊)
clmvsneg.s · = ( ·𝑠𝑊)
clmvsneg.n 𝑁 = (invg𝑊)
clmvsneg.k 𝐾 = (Base‘𝐹)
clmvsneg.w (𝜑𝑊 ∈ ℂMod)
clmvsneg.x (𝜑𝑋𝐵)
clmvsneg.r (𝜑𝑅𝐾)
Assertion
Ref Expression
clmvsneg (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (-𝑅 · 𝑋))

Proof of Theorem clmvsneg
StepHypRef Expression
1 clmvsneg.b . . 3 𝐵 = (Base‘𝑊)
2 clmvsneg.f . . 3 𝐹 = (Scalar‘𝑊)
3 clmvsneg.s . . 3 · = ( ·𝑠𝑊)
4 clmvsneg.n . . 3 𝑁 = (invg𝑊)
5 clmvsneg.k . . 3 𝐾 = (Base‘𝐹)
6 eqid 2729 . . 3 (invg𝐹) = (invg𝐹)
7 clmvsneg.w . . . 4 (𝜑𝑊 ∈ ℂMod)
8 clmlmod 24943 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
97, 8syl 17 . . 3 (𝜑𝑊 ∈ LMod)
10 clmvsneg.x . . 3 (𝜑𝑋𝐵)
11 clmvsneg.r . . 3 (𝜑𝑅𝐾)
121, 2, 3, 4, 5, 6, 9, 10, 11lmodvsneg 20788 . 2 (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (((invg𝐹)‘𝑅) · 𝑋))
132, 5clmneg 24957 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑅𝐾) → -𝑅 = ((invg𝐹)‘𝑅))
147, 11, 13syl2anc 584 . . 3 (𝜑 → -𝑅 = ((invg𝐹)‘𝑅))
1514oveq1d 7384 . 2 (𝜑 → (-𝑅 · 𝑋) = (((invg𝐹)‘𝑅) · 𝑋))
1612, 15eqtr4d 2767 1 (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (-𝑅 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  -cneg 11382  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  invgcminusg 18842  LModclmod 20742  ℂModcclm 24938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrg 20455  df-lmod 20744  df-cnfld 21241  df-clm 24939
This theorem is referenced by:  clmmulg  24977  cphipval  25119
  Copyright terms: Public domain W3C validator