Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofmpt2 Structured version   Visualization version   GIF version

Theorem cofmpt2 30870
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.)
Hypotheses
Ref Expression
cofmpt2.1 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
cofmpt2.2 ((𝜑𝑦𝐵) → 𝐶𝐸)
cofmpt2.3 (𝜑𝐹:𝐴𝐵)
cofmpt2.4 (𝜑𝐷𝑉)
Assertion
Ref Expression
cofmpt2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐷   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem cofmpt2
StepHypRef Expression
1 cofmpt2.2 . . . 4 ((𝜑𝑦𝐵) → 𝐶𝐸)
21fmpttd 6971 . . 3 (𝜑 → (𝑦𝐵𝐶):𝐵𝐸)
3 cofmpt2.3 . . 3 (𝜑𝐹:𝐴𝐵)
4 fcompt 6987 . . 3 (((𝑦𝐵𝐶):𝐵𝐸𝐹:𝐴𝐵) → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
52, 3, 4syl2anc 583 . 2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
6 eqid 2738 . . . 4 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
7 cofmpt2.1 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
87adantlr 711 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
93ffvelrnda 6943 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
10 cofmpt2.4 . . . . 5 (𝜑𝐷𝑉)
1110adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐷𝑉)
126, 8, 9, 11fvmptd2 6865 . . 3 ((𝜑𝑥𝐴) → ((𝑦𝐵𝐶)‘(𝐹𝑥)) = 𝐷)
1312mpteq2dva 5170 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))) = (𝑥𝐴𝐷))
145, 13eqtrd 2778 1 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  ccom 5584  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator