![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cofmpt2 | Structured version Visualization version GIF version |
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.) |
Ref | Expression |
---|---|
cofmpt2.1 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
cofmpt2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) |
cofmpt2.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
cofmpt2.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
cofmpt2 | ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofmpt2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) | |
2 | 1 | fmpttd 7115 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸) |
3 | cofmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | fcompt 7131 | . . 3 ⊢ (((𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸 ∧ 𝐹:𝐴⟶𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) | |
5 | 2, 3, 4 | syl2anc 585 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) |
6 | eqid 2733 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
7 | cofmpt2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) | |
8 | 7 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
9 | 3 | ffvelcdmda 7087 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
10 | cofmpt2.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
11 | 10 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝑉) |
12 | 6, 8, 9, 11 | fvmptd2 7007 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)) = 𝐷) |
13 | 12 | mpteq2dva 5249 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
14 | 5, 13 | eqtrd 2773 | 1 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ∘ ccom 5681 ⟶wf 6540 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |