Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofmpt2 Structured version   Visualization version   GIF version

Theorem cofmpt2 32362
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.)
Hypotheses
Ref Expression
cofmpt2.1 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
cofmpt2.2 ((𝜑𝑦𝐵) → 𝐶𝐸)
cofmpt2.3 (𝜑𝐹:𝐴𝐵)
cofmpt2.4 (𝜑𝐷𝑉)
Assertion
Ref Expression
cofmpt2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐷   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem cofmpt2
StepHypRef Expression
1 cofmpt2.2 . . . 4 ((𝜑𝑦𝐵) → 𝐶𝐸)
21fmpttd 7109 . . 3 (𝜑 → (𝑦𝐵𝐶):𝐵𝐸)
3 cofmpt2.3 . . 3 (𝜑𝐹:𝐴𝐵)
4 fcompt 7126 . . 3 (((𝑦𝐵𝐶):𝐵𝐸𝐹:𝐴𝐵) → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
52, 3, 4syl2anc 583 . 2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
6 eqid 2726 . . . 4 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
7 cofmpt2.1 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
87adantlr 712 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
93ffvelcdmda 7079 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
10 cofmpt2.4 . . . . 5 (𝜑𝐷𝑉)
1110adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐷𝑉)
126, 8, 9, 11fvmptd2 6999 . . 3 ((𝜑𝑥𝐴) → ((𝑦𝐵𝐶)‘(𝐹𝑥)) = 𝐷)
1312mpteq2dva 5241 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))) = (𝑥𝐴𝐷))
145, 13eqtrd 2766 1 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cmpt 5224  ccom 5673  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator