Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofmpt2 Structured version   Visualization version   GIF version

Theorem cofmpt2 32565
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.)
Hypotheses
Ref Expression
cofmpt2.1 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
cofmpt2.2 ((𝜑𝑦𝐵) → 𝐶𝐸)
cofmpt2.3 (𝜑𝐹:𝐴𝐵)
cofmpt2.4 (𝜑𝐷𝑉)
Assertion
Ref Expression
cofmpt2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐷   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem cofmpt2
StepHypRef Expression
1 cofmpt2.2 . . . 4 ((𝜑𝑦𝐵) → 𝐶𝐸)
21fmpttd 7090 . . 3 (𝜑 → (𝑦𝐵𝐶):𝐵𝐸)
3 cofmpt2.3 . . 3 (𝜑𝐹:𝐴𝐵)
4 fcompt 7108 . . 3 (((𝑦𝐵𝐶):𝐵𝐸𝐹:𝐴𝐵) → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
52, 3, 4syl2anc 584 . 2 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))))
6 eqid 2730 . . . 4 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
7 cofmpt2.1 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
87adantlr 715 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝐶 = 𝐷)
93ffvelcdmda 7059 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
10 cofmpt2.4 . . . . 5 (𝜑𝐷𝑉)
1110adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐷𝑉)
126, 8, 9, 11fvmptd2 6979 . . 3 ((𝜑𝑥𝐴) → ((𝑦𝐵𝐶)‘(𝐹𝑥)) = 𝐷)
1312mpteq2dva 5203 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑦𝐵𝐶)‘(𝐹𝑥))) = (𝑥𝐴𝐷))
145, 13eqtrd 2765 1 (𝜑 → ((𝑦𝐵𝐶) ∘ 𝐹) = (𝑥𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  ccom 5645  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator