Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cofmpt2 | Structured version Visualization version GIF version |
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.) |
Ref | Expression |
---|---|
cofmpt2.1 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
cofmpt2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) |
cofmpt2.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
cofmpt2.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
cofmpt2 | ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofmpt2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) | |
2 | 1 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸) |
3 | cofmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | fcompt 7005 | . . 3 ⊢ (((𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸 ∧ 𝐹:𝐴⟶𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) |
6 | eqid 2738 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
7 | cofmpt2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) | |
8 | 7 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
9 | 3 | ffvelrnda 6961 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
10 | cofmpt2.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝑉) |
12 | 6, 8, 9, 11 | fvmptd2 6883 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)) = 𝐷) |
13 | 12 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
14 | 5, 13 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |