| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofmpt2 | Structured version Visualization version GIF version | ||
| Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| cofmpt2.1 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
| cofmpt2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) |
| cofmpt2.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| cofmpt2.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| cofmpt2 | ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofmpt2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐸) | |
| 2 | 1 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸) |
| 3 | cofmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 4 | fcompt 7066 | . . 3 ⊢ (((𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐸 ∧ 𝐹:𝐴⟶𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)))) |
| 6 | eqid 2731 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 7 | cofmpt2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) | |
| 8 | 7 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝐶 = 𝐷) |
| 9 | 3 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 10 | cofmpt2.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝑉) |
| 12 | 6, 8, 9, 11 | fvmptd2 6937 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥)) = 𝐷) |
| 13 | 12 | mpteq2dva 5184 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
| 14 | 5, 13 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝐶) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |