MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd2 Structured version   Visualization version   GIF version

Theorem fvmptd2 6979
Description: Deduction version of fvmpt 6971 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1 𝐹 = (𝑥𝐷𝐵)
fvmptd2.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd2.3 (𝜑𝐴𝐷)
fvmptd2.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd2 (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3 𝐹 = (𝑥𝐷𝐵)
21a1i 11 . 2 (𝜑𝐹 = (𝑥𝐷𝐵))
3 fvmptd2.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
4 fvmptd2.3 . 2 (𝜑𝐴𝐷)
5 fvmptd2.4 . 2 (𝜑𝐶𝑉)
62, 3, 4, 5fvmptd 6978 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  fvmptopabOLD  7447  updjudhcoinlf  9892  updjudhcoinrg  9893  lcmf0val  16599  fvprmselelfz  17022  fvprmselgcd1  17023  setcval  18046  catcval  18069  estrcval  18092  hofval  18220  yonval  18229  frmdval  18785  smndex1igid  18838  smndex1n0mnd  18846  gexval  19515  rngcval  20534  ringcval  20563  frobrhm  21492  pmatcollpw3fi1lem1  22680  chfacfscmul0  22752  chfacfscmulgsum  22754  chfacfpmmul0  22756  chfacfpmmulgsum  22758  lmfval  23126  kgenval  23429  ptval  23464  utopval  24127  ustuqtoplem  24134  utopsnneiplem  24142  tusval  24160  blfvalps  24278  tmsval  24376  metuval  24444  caufval  25182  dchrval  27152  gausslemma2dlem2  27285  gausslemma2dlem3  27286  israg  28631  perpln1  28644  perpln2  28645  isperp  28646  vtxdgfval  29402  crctcsh  29761  clwlkclwwlklem2fv1  29931  clwlkclwwlklem2fv2  29932  cofmpt2  32565  pwrssmgc  32933  gsumfs2d  33002  elrgspnlem2  33201  elrgspnlem3  33202  elrgspnlem4  33203  rlocf1  33231  fracval  33261  qusima  33386  elrspunidl  33406  elrspunsn  33407  zringfrac  33532  r1pquslmic  33583  fldextrspunlsp  33676  constrsuc  33735  madjusmdetlem2  33825  metidval  33887  pstmval  33892  carsgval  34301  bj-rdg0gALT  37066  bj-finsumval0  37280  cdleme31fv2  40394  fiabv  42531  iunrelexpmin1  43704  iunrelexpmin2  43708  rfovcnvf1od  44000  limsup10exlem  45777  dvnprodlem1  45951  prproropf1olem3  47510  prprval  47519  isuspgrim0lem  47897  clintopval  48196  1arymaptfo  48636  2arymptfv  48643  2arymaptfo  48647  ackval42  48689
  Copyright terms: Public domain W3C validator