MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd2 Structured version   Visualization version   GIF version

Theorem fvmptd2 6937
Description: Deduction version of fvmpt 6929 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1 𝐹 = (𝑥𝐷𝐵)
fvmptd2.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd2.3 (𝜑𝐴𝐷)
fvmptd2.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd2 (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3 𝐹 = (𝑥𝐷𝐵)
21a1i 11 . 2 (𝜑𝐹 = (𝑥𝐷𝐵))
3 fvmptd2.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
4 fvmptd2.3 . 2 (𝜑𝐴𝐷)
5 fvmptd2.4 . 2 (𝜑𝐶𝑉)
62, 3, 4, 5fvmptd 6936 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  updjudhcoinlf  9825  updjudhcoinrg  9826  lcmf0val  16533  fvprmselelfz  16956  fvprmselgcd1  16957  setcval  17984  catcval  18007  estrcval  18030  hofval  18158  yonval  18167  frmdval  18759  smndex1igid  18812  smndex1n0mnd  18820  gexval  19491  rngcval  20534  ringcval  20563  frobrhm  21513  pmatcollpw3fi1lem1  22702  chfacfscmul0  22774  chfacfscmulgsum  22776  chfacfpmmul0  22778  chfacfpmmulgsum  22780  lmfval  23148  kgenval  23451  ptval  23486  utopval  24148  ustuqtoplem  24155  utopsnneiplem  24163  tusval  24181  blfvalps  24299  tmsval  24397  metuval  24465  caufval  25203  dchrval  27173  gausslemma2dlem2  27306  gausslemma2dlem3  27307  israg  28676  perpln1  28689  perpln2  28690  isperp  28691  vtxdgfval  29447  crctcsh  29803  clwlkclwwlklem2fv1  29973  clwlkclwwlklem2fv2  29974  cofmpt2  32614  pwrssmgc  32979  gsumfs2d  33033  elrgspnlem2  33208  elrgspnlem3  33209  elrgspnlem4  33210  rlocf1  33238  fracval  33268  qusima  33371  elrspunidl  33391  elrspunsn  33392  zringfrac  33517  r1pquslmic  33569  mplvrpmmhm  33574  mplvrpmrhm  33575  fldextrspunlsp  33685  constrsuc  33749  madjusmdetlem2  33839  metidval  33901  pstmval  33906  carsgval  34314  bj-rdg0gALT  37111  bj-finsumval0  37325  cdleme31fv2  40438  fiabv  42575  iunrelexpmin1  43747  iunrelexpmin2  43751  rfovcnvf1od  44043  limsup10exlem  45816  dvnprodlem1  45990  prproropf1olem3  47542  prprval  47551  isuspgrim0lem  47930  clintopval  48241  1arymaptfo  48681  2arymptfv  48688  2arymaptfo  48692  ackval42  48734
  Copyright terms: Public domain W3C validator