![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptd2 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 7029 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 7036 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvmptopabOLD 7505 updjudhcoinlf 10001 updjudhcoinrg 10002 lcmf0val 16669 fvprmselelfz 17091 fvprmselgcd1 17092 setcval 18144 catcval 18167 estrcval 18192 hofval 18322 yonval 18331 frmdval 18886 smndex1igid 18939 smndex1n0mnd 18947 gexval 19620 rngcval 20640 ringcval 20669 frobrhm 21617 pmatcollpw3fi1lem1 22813 chfacfscmul0 22885 chfacfscmulgsum 22887 chfacfpmmul0 22889 chfacfpmmulgsum 22891 lmfval 23261 kgenval 23564 ptval 23599 utopval 24262 ustuqtoplem 24269 utopsnneiplem 24277 tusval 24295 blfvalps 24414 tmsval 24514 metuval 24583 caufval 25328 dchrval 27296 gausslemma2dlem2 27429 gausslemma2dlem3 27430 israg 28723 perpln1 28736 perpln2 28737 isperp 28738 vtxdgfval 29503 crctcsh 29857 clwlkclwwlklem2fv1 30027 clwlkclwwlklem2fv2 30028 cofmpt2 32653 pwrssmgc 32973 rlocf1 33245 fracval 33271 qusima 33401 elrspunidl 33421 elrspunsn 33422 zringfrac 33547 r1pquslmic 33596 constrsuc 33728 metidval 33836 pstmval 33841 carsgval 34268 bj-rdg0gALT 37037 bj-finsumval0 37251 cdleme31fv2 40350 fiabv 42491 iunrelexpmin1 43670 iunrelexpmin2 43674 rfovcnvf1od 43966 limsup10exlem 45693 prproropf1olem3 47379 prprval 47388 isuspgrim0lem 47755 clintopval 47927 1arymaptfo 48377 2arymptfv 48384 2arymaptfo 48388 ackval42 48430 |
Copyright terms: Public domain | W3C validator |