Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptd2 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 6875 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 6882 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: fvmptopabOLD 7330 updjudhcoinlf 9690 updjudhcoinrg 9691 lcmf0val 16327 fvprmselelfz 16745 fvprmselgcd1 16746 setcval 17792 catcval 17815 estrcval 17840 hofval 17970 yonval 17979 frmdval 18490 smndex1igid 18543 smndex1n0mnd 18551 gexval 19183 pmatcollpw3fi1lem1 21935 chfacfscmul0 22007 chfacfscmulgsum 22009 chfacfpmmul0 22011 chfacfpmmulgsum 22013 lmfval 22383 kgenval 22686 ptval 22721 utopval 23384 ustuqtoplem 23391 utopsnneiplem 23399 tusval 23417 blfvalps 23536 tmsval 23636 metuval 23705 caufval 24439 dchrval 26382 gausslemma2dlem2 26515 gausslemma2dlem3 26516 israg 27058 perpln1 27071 perpln2 27072 isperp 27073 vtxdgfval 27834 crctcsh 28189 clwlkclwwlklem2fv1 28359 clwlkclwwlklem2fv2 28360 cofmpt2 30969 pwrssmgc 31278 frobrhm 31485 qusima 31594 elrspunidl 31606 carsgval 32270 bj-rdg0gALT 35242 bj-finsumval0 35456 cdleme31fv2 38407 iunrelexpmin1 41316 iunrelexpmin2 41320 rfovcnvf1od 41612 limsup10exlem 43313 prproropf1olem3 44957 prprval 44966 clintopval 45398 rngcval 45520 ringcval 45566 1arymaptfo 45989 2arymptfv 45996 2arymaptfo 46000 ackval42 46042 |
Copyright terms: Public domain | W3C validator |