MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd2 Structured version   Visualization version   GIF version

Theorem fvmptd2 7037
Description: Deduction version of fvmpt 7029 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1 𝐹 = (𝑥𝐷𝐵)
fvmptd2.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd2.3 (𝜑𝐴𝐷)
fvmptd2.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd2 (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3 𝐹 = (𝑥𝐷𝐵)
21a1i 11 . 2 (𝜑𝐹 = (𝑥𝐷𝐵))
3 fvmptd2.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
4 fvmptd2.3 . 2 (𝜑𝐴𝐷)
5 fvmptd2.4 . 2 (𝜑𝐶𝑉)
62, 3, 4, 5fvmptd 7036 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  fvmptopabOLD  7505  updjudhcoinlf  10001  updjudhcoinrg  10002  lcmf0val  16669  fvprmselelfz  17091  fvprmselgcd1  17092  setcval  18144  catcval  18167  estrcval  18192  hofval  18322  yonval  18331  frmdval  18886  smndex1igid  18939  smndex1n0mnd  18947  gexval  19620  rngcval  20640  ringcval  20669  frobrhm  21617  pmatcollpw3fi1lem1  22813  chfacfscmul0  22885  chfacfscmulgsum  22887  chfacfpmmul0  22889  chfacfpmmulgsum  22891  lmfval  23261  kgenval  23564  ptval  23599  utopval  24262  ustuqtoplem  24269  utopsnneiplem  24277  tusval  24295  blfvalps  24414  tmsval  24514  metuval  24583  caufval  25328  dchrval  27296  gausslemma2dlem2  27429  gausslemma2dlem3  27430  israg  28723  perpln1  28736  perpln2  28737  isperp  28738  vtxdgfval  29503  crctcsh  29857  clwlkclwwlklem2fv1  30027  clwlkclwwlklem2fv2  30028  cofmpt2  32653  pwrssmgc  32973  rlocf1  33245  fracval  33271  qusima  33401  elrspunidl  33421  elrspunsn  33422  zringfrac  33547  r1pquslmic  33596  constrsuc  33728  metidval  33836  pstmval  33841  carsgval  34268  bj-rdg0gALT  37037  bj-finsumval0  37251  cdleme31fv2  40350  fiabv  42491  iunrelexpmin1  43670  iunrelexpmin2  43674  rfovcnvf1od  43966  limsup10exlem  45693  prproropf1olem3  47379  prprval  47388  isuspgrim0lem  47755  clintopval  47927  1arymaptfo  48377  2arymptfv  48384  2arymaptfo  48388  ackval42  48430
  Copyright terms: Public domain W3C validator