![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptd2 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 6589 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 6595 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ↦ cmpt 5002 ‘cfv 6182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 |
This theorem is referenced by: fvmptopab 7022 updjudhcoinlf 9147 updjudhcoinrg 9148 lcmf0val 15812 fvprmselelfz 16226 fvprmselgcd1 16227 setcval 17185 catcval 17204 estrcval 17222 hofval 17350 yonval 17359 frmdval 17847 gexval 18454 pmatcollpw3fi1lem1 21088 chfacfscmul0 21160 chfacfscmulgsum 21162 chfacfpmmul0 21164 chfacfpmmulgsum 21166 lmfval 21534 kgenval 21837 ptval 21872 utopval 22534 ustuqtoplem 22541 utopsnneiplem 22549 tusval 22568 blfvalps 22686 tmsval 22784 metuval 22852 caufval 23571 dchrval 25502 gausslemma2dlem2 25635 gausslemma2dlem3 25636 israg 26175 perpln1 26188 perpln2 26189 isperp 26190 vtxdgfval 26942 crctcsh 27300 clwlkclwwlklem2fv1 27491 clwlkclwwlklem2fv2 27492 cofmpt2 30131 carsgval 31163 cdleme31fv2 36922 limsup10exlem 41430 prproropf1olem3 42975 prprval 42984 clintopval 43415 rngcval 43537 ringcval 43583 |
Copyright terms: Public domain | W3C validator |