Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptd2 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 6857 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 6864 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvmptopab 7308 updjudhcoinlf 9621 updjudhcoinrg 9622 lcmf0val 16255 fvprmselelfz 16673 fvprmselgcd1 16674 setcval 17708 catcval 17731 estrcval 17756 hofval 17886 yonval 17895 frmdval 18405 smndex1igid 18458 smndex1n0mnd 18466 gexval 19098 pmatcollpw3fi1lem1 21843 chfacfscmul0 21915 chfacfscmulgsum 21917 chfacfpmmul0 21919 chfacfpmmulgsum 21921 lmfval 22291 kgenval 22594 ptval 22629 utopval 23292 ustuqtoplem 23299 utopsnneiplem 23307 tusval 23325 blfvalps 23444 tmsval 23542 metuval 23611 caufval 24344 dchrval 26287 gausslemma2dlem2 26420 gausslemma2dlem3 26421 israg 26962 perpln1 26975 perpln2 26976 isperp 26977 vtxdgfval 27737 crctcsh 28090 clwlkclwwlklem2fv1 28260 clwlkclwwlklem2fv2 28261 cofmpt2 30870 pwrssmgc 31180 frobrhm 31387 qusima 31496 elrspunidl 31508 carsgval 32170 bj-rdg0gALT 35169 bj-finsumval0 35383 cdleme31fv2 38334 iunrelexpmin1 41205 iunrelexpmin2 41209 rfovcnvf1od 41501 limsup10exlem 43203 prproropf1olem3 44845 prprval 44854 clintopval 45286 rngcval 45408 ringcval 45454 1arymaptfo 45877 2arymptfv 45884 2arymaptfo 45888 ackval42 45930 |
Copyright terms: Public domain | W3C validator |