Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptd2 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 6818 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 6825 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ↦ cmpt 5135 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 |
This theorem is referenced by: fvmptopab 7266 updjudhcoinlf 9548 updjudhcoinrg 9549 lcmf0val 16179 fvprmselelfz 16597 fvprmselgcd1 16598 setcval 17583 catcval 17606 estrcval 17631 hofval 17760 yonval 17769 frmdval 18278 smndex1igid 18331 smndex1n0mnd 18339 gexval 18967 pmatcollpw3fi1lem1 21683 chfacfscmul0 21755 chfacfscmulgsum 21757 chfacfpmmul0 21759 chfacfpmmulgsum 21761 lmfval 22129 kgenval 22432 ptval 22467 utopval 23130 ustuqtoplem 23137 utopsnneiplem 23145 tusval 23163 blfvalps 23281 tmsval 23379 metuval 23447 caufval 24172 dchrval 26115 gausslemma2dlem2 26248 gausslemma2dlem3 26249 israg 26788 perpln1 26801 perpln2 26802 isperp 26803 vtxdgfval 27555 crctcsh 27908 clwlkclwwlklem2fv1 28078 clwlkclwwlklem2fv2 28079 cofmpt2 30688 pwrssmgc 30997 frobrhm 31204 qusima 31308 elrspunidl 31320 carsgval 31982 bj-finsumval0 35191 cdleme31fv2 38144 iunrelexpmin1 40993 iunrelexpmin2 40997 rfovcnvf1od 41289 limsup10exlem 42988 prproropf1olem3 44630 prprval 44639 clintopval 45071 rngcval 45193 ringcval 45239 1arymaptfo 45662 2arymptfv 45669 2arymaptfo 45673 ackval42 45715 |
Copyright terms: Public domain | W3C validator |