![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcompt | Structured version Visualization version GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcompt | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7115 | . . 3 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
2 | 1 | adantll 713 | . 2 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
3 | ffn 6747 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
5 | dffn5 6980 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) | |
6 | 4, 5 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
7 | ffn 6747 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
9 | dffn5 6980 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
11 | fveq2 6920 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
12 | 2, 6, 10, 11 | fmptco 7163 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: 2fvcoidd 7333 revco 14883 repsco 14889 caucvgrlem2 15723 fucidcl 18035 fucsect 18042 dfinito3 18072 dftermo3 18073 prf1st 18273 prf2nd 18274 curfcl 18302 yonedalem4c 18347 yonedalem3b 18349 yonedainv 18351 mhmvlin 18836 frmdup3 18902 smndex1gid 18938 efginvrel1 19770 frgpup3lem 19819 frgpup3 19820 dprdfinv 20063 grpvlinv 22423 grpvrinv 22424 chcoeffeqlem 22912 prdstps 23658 imasdsf1olem 24404 gamcvg2lem 27120 cofmpt2 32653 meascnbl 34183 elmrsubrn 35488 mzprename 42705 mendassa 43151 fcomptss 45110 mulc1cncfg 45510 expcnfg 45512 cncficcgt0 45809 fprodsubrecnncnvlem 45828 fprodaddrecnncnvlem 45830 dvsinax 45834 dirkercncflem2 46025 fourierdlem18 46046 fourierdlem53 46080 fourierdlem93 46120 fourierdlem101 46128 fourierdlem111 46138 sge0resrnlem 46324 omeiunle 46438 ovolval3 46568 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |