| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcompt | Structured version Visualization version GIF version | ||
| Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fcompt | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7071 | . . 3 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
| 3 | ffn 6706 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
| 5 | dffn5 6937 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
| 7 | ffn 6706 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
| 9 | dffn5 6937 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
| 11 | fveq2 6876 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
| 12 | 2, 6, 10, 11 | fmptco 7119 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ∘ ccom 5658 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: 2fvcoidd 7290 revco 14853 repsco 14859 caucvgrlem2 15691 fucidcl 17981 fucsect 17988 dfinito3 18018 dftermo3 18019 prf1st 18216 prf2nd 18217 curfcl 18244 yonedalem4c 18289 yonedalem3b 18291 yonedainv 18293 mhmvlin 18779 frmdup3 18845 smndex1gid 18881 efginvrel1 19709 frgpup3lem 19758 frgpup3 19759 dprdfinv 20002 grpvlinv 22336 grpvrinv 22337 chcoeffeqlem 22823 prdstps 23567 imasdsf1olem 24312 gamcvg2lem 27021 cofmpt2 32612 meascnbl 34250 elmrsubrn 35542 mzprename 42772 mendassa 43214 fcomptss 45227 mulc1cncfg 45618 expcnfg 45620 cncficcgt0 45917 fprodsubrecnncnvlem 45936 fprodaddrecnncnvlem 45938 dvsinax 45942 dirkercncflem2 46133 fourierdlem18 46154 fourierdlem53 46188 fourierdlem93 46228 fourierdlem101 46236 fourierdlem111 46246 sge0resrnlem 46432 omeiunle 46546 ovolval3 46676 fucorid2 49274 precofval2 49280 amgmwlem 49666 |
| Copyright terms: Public domain | W3C validator |