MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcompt Structured version   Visualization version   GIF version

Theorem fcompt 7075
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸

Proof of Theorem fcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7023 . . 3 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
21adantll 714 . 2 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
3 ffn 6659 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
43adantl 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
5 dffn5 6889 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
64, 5sylib 218 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
7 ffn 6659 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
87adantr 480 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
9 dffn5 6889 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
108, 9sylib 218 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
11 fveq2 6831 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
122, 6, 10, 11fmptco 7071 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5176  ccom 5625   Fn wfn 6484  wf 6485  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  2fvcoidd  7240  revco  14751  repsco  14757  caucvgrlem2  15592  fucidcl  17885  fucsect  17892  dfinito3  17922  dftermo3  17923  prf1st  18120  prf2nd  18121  curfcl  18148  yonedalem4c  18193  yonedalem3b  18195  yonedainv  18197  mhmvlin  18719  frmdup3  18785  smndex1gid  18821  efginvrel1  19650  frgpup3lem  19699  frgpup3  19700  dprdfinv  19943  grpvlinv  22323  grpvrinv  22324  chcoeffeqlem  22810  prdstps  23554  imasdsf1olem  24298  gamcvg2lem  27006  cofmpt2  32627  meascnbl  34243  elmrsubrn  35575  mzprename  42856  mendassa  43297  fcomptss  45314  mulc1cncfg  45703  expcnfg  45705  cncficcgt0  46000  fprodsubrecnncnvlem  46019  fprodaddrecnncnvlem  46021  dvsinax  46025  dirkercncflem2  46216  fourierdlem18  46237  fourierdlem53  46271  fourierdlem93  46311  fourierdlem101  46319  fourierdlem111  46329  sge0resrnlem  46515  omeiunle  46629  ovolval3  46759  fucorid2  49478  precofval2  49484  amgmwlem  49917
  Copyright terms: Public domain W3C validator