MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcompt Structured version   Visualization version   GIF version

Theorem fcompt 6999
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸

Proof of Theorem fcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6953 . . 3 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
21adantll 710 . 2 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
3 ffn 6596 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
43adantl 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
5 dffn5 6822 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
64, 5sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
7 ffn 6596 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
87adantr 480 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
9 dffn5 6822 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
108, 9sylib 217 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
11 fveq2 6768 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
122, 6, 10, 11fmptco 6995 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cmpt 5161  ccom 5592   Fn wfn 6425  wf 6426  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438
This theorem is referenced by:  2fvcoidd  7162  revco  14528  repsco  14534  caucvgrlem2  15367  fucidcl  17664  fucsect  17671  dfinito3  17701  dftermo3  17702  prf1st  17902  prf2nd  17903  curfcl  17931  yonedalem4c  17976  yonedalem3b  17978  yonedainv  17980  frmdup3  18487  smndex1gid  18523  efginvrel1  19315  frgpup3lem  19364  frgpup3  19365  dprdfinv  19603  grpvlinv  21525  grpvrinv  21526  mhmvlin  21527  chcoeffeqlem  22015  prdstps  22761  imasdsf1olem  23507  gamcvg2lem  26189  cofmpt2  30948  meascnbl  32166  elmrsubrn  33461  mzprename  40551  mendassa  40999  fcomptss  42696  mulc1cncfg  43084  expcnfg  43086  cncficcgt0  43383  fprodsubrecnncnvlem  43402  fprodaddrecnncnvlem  43404  dvsinax  43408  dirkercncflem2  43599  fourierdlem18  43620  fourierdlem53  43654  fourierdlem93  43694  fourierdlem101  43702  fourierdlem111  43712  sge0resrnlem  43895  omeiunle  44009  ovolval3  44139  amgmwlem  46458
  Copyright terms: Public domain W3C validator