MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctiswlk Structured version   Visualization version   GIF version

Theorem crctiswlk 29832
Description: A circuit is a walk. (Contributed by AV, 6-Apr-2021.)
Assertion
Ref Expression
crctiswlk (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem crctiswlk
StepHypRef Expression
1 crctistrl 29831 . 2 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29733 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5166  cfv 6573  Walkscwlks 29632  Trailsctrls 29726  Circuitsccrcts 29820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-wlks 29635  df-trls 29728  df-crcts 29822
This theorem is referenced by:  crctcshlem1  29850  crctcshlem2  29851  crctcshlem4  29853  crctcshwlkn0  29854  eucrctshift  30275  eucrct2eupth  30277
  Copyright terms: Public domain W3C validator