| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crctcshtrl | Structured version Visualization version GIF version | ||
| Description: Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a trail 〈𝐻, 𝑄〉. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
| crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
| crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
| crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
| crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
| Ref | Expression |
|---|---|
| crctcshtrl | ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | crctcsh.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | crctcsh.d | . . 3 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
| 4 | crctcsh.n | . . 3 ⊢ 𝑁 = (♯‘𝐹) | |
| 5 | crctcsh.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) | |
| 6 | crctcsh.h | . . 3 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
| 7 | crctcsh.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlk 29804 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
| 9 | crctistrl 29777 | . . . . 5 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 10 | 2 | trlf1 29679 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 11 | df-f1 6493 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) | |
| 12 | iswrdi 14428 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹 ∈ Word dom 𝐼) | |
| 13 | 12 | anim1i 615 | . . . . . 6 ⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
| 14 | 11, 13 | sylbi 217 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
| 15 | 3, 9, 10, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
| 16 | elfzoelz 13563 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℤ) |
| 18 | df-3an 1088 | . . . 4 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑆 ∈ ℤ)) | |
| 19 | 15, 17, 18 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ)) |
| 20 | cshinj 14722 | . . 3 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun ◡𝐻)) | |
| 21 | 19, 6, 20 | mpisyl 21 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
| 22 | istrl 29677 | . 2 ⊢ (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun ◡𝐻)) | |
| 23 | 8, 21, 22 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 dom cdm 5621 Fun wfun 6482 ⟶wf 6484 –1-1→wf1 6485 ‘cfv 6488 (class class class)co 7354 0cc0 11015 + caddc 11018 ≤ cle 11156 − cmin 11353 ℤcz 12477 ...cfz 13411 ..^cfzo 13558 ♯chash 14241 Word cword 14424 cyclShift ccsh 14699 Vtxcvtx 28978 iEdgciedg 28979 Walkscwlks 29579 Trailsctrls 29671 Circuitsccrcts 29766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-hash 14242 df-word 14425 df-concat 14482 df-substr 14553 df-pfx 14583 df-csh 14700 df-wlks 29582 df-trls 29673 df-crcts 29768 |
| This theorem is referenced by: crctcsh 29806 eucrctshift 30227 |
| Copyright terms: Public domain | W3C validator |