MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshtrl Structured version   Visualization version   GIF version

Theorem crctcshtrl 29706
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a trail 𝐻, 𝑄. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshtrl (𝜑𝐻(Trails‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem crctcshtrl
StepHypRef Expression
1 crctcsh.v . . 3 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . 3 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . 3 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . 3 𝑁 = (♯‘𝐹)
5 crctcsh.s . . 3 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshwlk 29705 . 2 (𝜑𝐻(Walks‘𝐺)𝑄)
9 crctistrl 29681 . . . . 5 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
102trlf1 29584 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
11 df-f1 6554 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
12 iswrdi 14504 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹 ∈ Word dom 𝐼)
1312anim1i 613 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
1411, 13sylbi 216 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
153, 9, 10, 144syl 19 . . . 4 (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
16 elfzoelz 13667 . . . . 5 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
175, 16syl 17 . . . 4 (𝜑𝑆 ∈ ℤ)
18 df-3an 1086 . . . 4 ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ∧ 𝑆 ∈ ℤ))
1915, 17, 18sylanbrc 581 . . 3 (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ))
20 cshinj 14797 . . 3 ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun 𝐻))
2119, 6, 20mpisyl 21 . 2 (𝜑 → Fun 𝐻)
22 istrl 29582 . 2 (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun 𝐻))
238, 21, 22sylanbrc 581 1 (𝜑𝐻(Trails‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  ifcif 4530   class class class wbr 5149  cmpt 5232  ccnv 5677  dom cdm 5678  Fun wfun 6543  wf 6545  1-1wf1 6546  cfv 6549  (class class class)co 7419  0cc0 11140   + caddc 11143  cle 11281  cmin 11476  cz 12591  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500   cyclShift ccsh 14774  Vtxcvtx 28881  iEdgciedg 28882  Walkscwlks 29482  Trailsctrls 29576  Circuitsccrcts 29670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-hash 14326  df-word 14501  df-concat 14557  df-substr 14627  df-pfx 14657  df-csh 14775  df-wlks 29485  df-trls 29578  df-crcts 29672
This theorem is referenced by:  crctcsh  29707  eucrctshift  30125
  Copyright terms: Public domain W3C validator