![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshtrl | Structured version Visualization version GIF version |
Description: Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a trail 〈𝐻, 𝑄〉. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshtrl | ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | crctcsh.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | crctcsh.d | . . 3 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
4 | crctcsh.n | . . 3 ⊢ 𝑁 = (♯‘𝐹) | |
5 | crctcsh.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) | |
6 | crctcsh.h | . . 3 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
7 | crctcsh.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlk 29705 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
9 | crctistrl 29681 | . . . . 5 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
10 | 2 | trlf1 29584 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
11 | df-f1 6554 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) | |
12 | iswrdi 14504 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹 ∈ Word dom 𝐼) | |
13 | 12 | anim1i 613 | . . . . . 6 ⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
14 | 11, 13 | sylbi 216 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
15 | 3, 9, 10, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
16 | elfzoelz 13667 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ) | |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℤ) |
18 | df-3an 1086 | . . . 4 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑆 ∈ ℤ)) | |
19 | 15, 17, 18 | sylanbrc 581 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ)) |
20 | cshinj 14797 | . . 3 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun ◡𝐻)) | |
21 | 19, 6, 20 | mpisyl 21 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
22 | istrl 29582 | . 2 ⊢ (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun ◡𝐻)) | |
23 | 8, 21, 22 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ifcif 4530 class class class wbr 5149 ↦ cmpt 5232 ◡ccnv 5677 dom cdm 5678 Fun wfun 6543 ⟶wf 6545 –1-1→wf1 6546 ‘cfv 6549 (class class class)co 7419 0cc0 11140 + caddc 11143 ≤ cle 11281 − cmin 11476 ℤcz 12591 ...cfz 13519 ..^cfzo 13662 ♯chash 14325 Word cword 14500 cyclShift ccsh 14774 Vtxcvtx 28881 iEdgciedg 28882 Walkscwlks 29482 Trailsctrls 29576 Circuitsccrcts 29670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-hash 14326 df-word 14501 df-concat 14557 df-substr 14627 df-pfx 14657 df-csh 14775 df-wlks 29485 df-trls 29578 df-crcts 29672 |
This theorem is referenced by: crctcsh 29707 eucrctshift 30125 |
Copyright terms: Public domain | W3C validator |