![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshtrl | Structured version Visualization version GIF version |
Description: Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a trail 〈𝐻, 𝑄〉. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshtrl | ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | crctcsh.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | crctcsh.d | . . 3 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
4 | crctcsh.n | . . 3 ⊢ 𝑁 = (♯‘𝐹) | |
5 | crctcsh.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) | |
6 | crctcsh.h | . . 3 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
7 | crctcsh.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlk 29855 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
9 | crctistrl 29831 | . . . . 5 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
10 | 2 | trlf1 29734 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
11 | df-f1 6578 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) | |
12 | iswrdi 14566 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹 ∈ Word dom 𝐼) | |
13 | 12 | anim1i 614 | . . . . . 6 ⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
14 | 11, 13 | sylbi 217 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
15 | 3, 9, 10, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
16 | elfzoelz 13716 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ) | |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℤ) |
18 | df-3an 1089 | . . . 4 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑆 ∈ ℤ)) | |
19 | 15, 17, 18 | sylanbrc 582 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ)) |
20 | cshinj 14859 | . . 3 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun ◡𝐻)) | |
21 | 19, 6, 20 | mpisyl 21 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
22 | istrl 29732 | . 2 ⊢ (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun ◡𝐻)) | |
23 | 8, 21, 22 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 0cc0 11184 + caddc 11187 ≤ cle 11325 − cmin 11520 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 cyclShift ccsh 14836 Vtxcvtx 29031 iEdgciedg 29032 Walkscwlks 29632 Trailsctrls 29726 Circuitsccrcts 29820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-hash 14380 df-word 14563 df-concat 14619 df-substr 14689 df-pfx 14719 df-csh 14837 df-wlks 29635 df-trls 29728 df-crcts 29822 |
This theorem is referenced by: crctcsh 29857 eucrctshift 30275 |
Copyright terms: Public domain | W3C validator |