Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crctcshtrl | Structured version Visualization version GIF version |
Description: Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a trail 〈𝐻, 𝑄〉. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshtrl | ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | crctcsh.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | crctcsh.d | . . 3 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
4 | crctcsh.n | . . 3 ⊢ 𝑁 = (♯‘𝐹) | |
5 | crctcsh.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) | |
6 | crctcsh.h | . . 3 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
7 | crctcsh.q | . . 3 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlk 28215 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
9 | crctistrl 28191 | . . . . 5 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
10 | 2 | trlf1 28094 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
11 | df-f1 6452 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) | |
12 | iswrdi 14249 | . . . . . . . 8 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹 ∈ Word dom 𝐼) | |
13 | 12 | anim1i 614 | . . . . . . 7 ⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
14 | 11, 13 | sylbi 216 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
15 | 10, 14 | syl 17 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
16 | 3, 9, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹)) |
17 | elfzoelz 13415 | . . . . 5 ⊢ (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ) | |
18 | 5, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℤ) |
19 | df-3an 1087 | . . . 4 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑆 ∈ ℤ)) | |
20 | 16, 18, 19 | sylanbrc 582 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ)) |
21 | cshinj 14552 | . . 3 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun ◡𝐻)) | |
22 | 20, 6, 21 | mpisyl 21 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
23 | istrl 28092 | . 2 ⊢ (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun ◡𝐻)) | |
24 | 8, 22, 23 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ifcif 4462 class class class wbr 5077 ↦ cmpt 5160 ◡ccnv 5590 dom cdm 5591 Fun wfun 6441 ⟶wf 6443 –1-1→wf1 6444 ‘cfv 6447 (class class class)co 7295 0cc0 10899 + caddc 10902 ≤ cle 11038 − cmin 11233 ℤcz 12347 ...cfz 13267 ..^cfzo 13410 ♯chash 14072 Word cword 14245 cyclShift ccsh 14529 Vtxcvtx 27394 iEdgciedg 27395 Walkscwlks 27991 Trailsctrls 28086 Circuitsccrcts 28180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-inf 9230 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fz 13268 df-fzo 13411 df-fl 13540 df-mod 13618 df-hash 14073 df-word 14246 df-concat 14302 df-substr 14382 df-pfx 14412 df-csh 14530 df-wlks 27994 df-trls 28088 df-crcts 28182 |
This theorem is referenced by: crctcsh 28217 eucrctshift 28635 |
Copyright terms: Public domain | W3C validator |