![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctcshtrl | Structured version Visualization version GIF version |
Description: Cyclically shifting the indices of a circuit β¨πΉ, πβ© results in a trail β¨π», πβ©. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctcsh.v | β’ π = (VtxβπΊ) |
crctcsh.i | β’ πΌ = (iEdgβπΊ) |
crctcsh.d | β’ (π β πΉ(CircuitsβπΊ)π) |
crctcsh.n | β’ π = (β―βπΉ) |
crctcsh.s | β’ (π β π β (0..^π)) |
crctcsh.h | β’ π» = (πΉ cyclShift π) |
crctcsh.q | β’ π = (π₯ β (0...π) β¦ if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π)))) |
Ref | Expression |
---|---|
crctcshtrl | β’ (π β π»(TrailsβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | . . 3 β’ π = (VtxβπΊ) | |
2 | crctcsh.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
3 | crctcsh.d | . . 3 β’ (π β πΉ(CircuitsβπΊ)π) | |
4 | crctcsh.n | . . 3 β’ π = (β―βπΉ) | |
5 | crctcsh.s | . . 3 β’ (π β π β (0..^π)) | |
6 | crctcsh.h | . . 3 β’ π» = (πΉ cyclShift π) | |
7 | crctcsh.q | . . 3 β’ π = (π₯ β (0...π) β¦ if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlk 29677 | . 2 β’ (π β π»(WalksβπΊ)π) |
9 | crctistrl 29653 | . . . . 5 β’ (πΉ(CircuitsβπΊ)π β πΉ(TrailsβπΊ)π) | |
10 | 2 | trlf1 29556 | . . . . . 6 β’ (πΉ(TrailsβπΊ)π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
11 | df-f1 6548 | . . . . . . 7 β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β (πΉ:(0..^(β―βπΉ))βΆdom πΌ β§ Fun β‘πΉ)) | |
12 | iswrdi 14500 | . . . . . . . 8 β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β πΉ β Word dom πΌ) | |
13 | 12 | anim1i 613 | . . . . . . 7 β’ ((πΉ:(0..^(β―βπΉ))βΆdom πΌ β§ Fun β‘πΉ) β (πΉ β Word dom πΌ β§ Fun β‘πΉ)) |
14 | 11, 13 | sylbi 216 | . . . . . 6 β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β (πΉ β Word dom πΌ β§ Fun β‘πΉ)) |
15 | 10, 14 | syl 17 | . . . . 5 β’ (πΉ(TrailsβπΊ)π β (πΉ β Word dom πΌ β§ Fun β‘πΉ)) |
16 | 3, 9, 15 | 3syl 18 | . . . 4 β’ (π β (πΉ β Word dom πΌ β§ Fun β‘πΉ)) |
17 | elfzoelz 13664 | . . . . 5 β’ (π β (0..^π) β π β β€) | |
18 | 5, 17 | syl 17 | . . . 4 β’ (π β π β β€) |
19 | df-3an 1086 | . . . 4 β’ ((πΉ β Word dom πΌ β§ Fun β‘πΉ β§ π β β€) β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π β β€)) | |
20 | 16, 18, 19 | sylanbrc 581 | . . 3 β’ (π β (πΉ β Word dom πΌ β§ Fun β‘πΉ β§ π β β€)) |
21 | cshinj 14793 | . . 3 β’ ((πΉ β Word dom πΌ β§ Fun β‘πΉ β§ π β β€) β (π» = (πΉ cyclShift π) β Fun β‘π»)) | |
22 | 20, 6, 21 | mpisyl 21 | . 2 β’ (π β Fun β‘π») |
23 | istrl 29554 | . 2 β’ (π»(TrailsβπΊ)π β (π»(WalksβπΊ)π β§ Fun β‘π»)) | |
24 | 8, 22, 23 | sylanbrc 581 | 1 β’ (π β π»(TrailsβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 ifcif 4524 class class class wbr 5143 β¦ cmpt 5226 β‘ccnv 5671 dom cdm 5672 Fun wfun 6537 βΆwf 6539 β1-1βwf1 6540 βcfv 6543 (class class class)co 7416 0cc0 11138 + caddc 11141 β€ cle 11279 β cmin 11474 β€cz 12588 ...cfz 13516 ..^cfzo 13659 β―chash 14321 Word cword 14496 cyclShift ccsh 14770 Vtxcvtx 28853 iEdgciedg 28854 Walkscwlks 29454 Trailsctrls 29548 Circuitsccrcts 29642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-hash 14322 df-word 14497 df-concat 14553 df-substr 14623 df-pfx 14653 df-csh 14771 df-wlks 29457 df-trls 29550 df-crcts 29644 |
This theorem is referenced by: crctcsh 29679 eucrctshift 30097 |
Copyright terms: Public domain | W3C validator |