MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem3 Structured version   Visualization version   GIF version

Theorem crctcshlem3 28163
Description: Lemma for crctcsh 28168. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshlem3 (𝜑 → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝑆(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem crctcshlem3
StepHypRef Expression
1 crctcsh.d . . 3 (𝜑𝐹(Circuits‘𝐺)𝑃)
2 crctistrl 28142 . . 3 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
3 trliswlk 28045 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkv 27960 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
5 simp1 1134 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → 𝐺 ∈ V)
63, 4, 53syl 18 . . 3 (𝐹(Trails‘𝐺)𝑃𝐺 ∈ V)
71, 2, 63syl 18 . 2 (𝜑𝐺 ∈ V)
8 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
98ovexi 7302 . . 3 𝐻 ∈ V
109a1i 11 . 2 (𝜑𝐻 ∈ V)
11 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
12 ovex 7301 . . . . 5 (0...𝑁) ∈ V
1312mptex 7093 . . . 4 (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ∈ V
1411, 13eqeltri 2836 . . 3 𝑄 ∈ V
1514a1i 11 . 2 (𝜑𝑄 ∈ V)
167, 10, 153jca 1126 1 (𝜑 → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  ifcif 4464   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  0cc0 10855   + caddc 10858  cle 10994  cmin 11188  ...cfz 13221  ..^cfzo 13364  chash 14025   cyclShift ccsh 14482  Vtxcvtx 27347  iEdgciedg 27348  Walkscwlks 27944  Trailsctrls 28038  Circuitsccrcts 28131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-wlks 27947  df-trls 28040  df-crcts 28133
This theorem is referenced by:  crctcshwlkn0  28165
  Copyright terms: Public domain W3C validator