| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crctcshlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for crctcsh 29803. (Contributed by AV, 10-Mar-2021.) |
| Ref | Expression |
|---|---|
| crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
| crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
| crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
| crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
| crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
| Ref | Expression |
|---|---|
| crctcshlem3 | ⊢ (𝜑 → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.d | . . 3 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
| 2 | crctistrl 29774 | . . 3 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 3 | trliswlk 29675 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 4 | wlkv 29592 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 5 | simp1 1136 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → 𝐺 ∈ V) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐺 ∈ V) |
| 7 | 1, 2, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 8 | crctcsh.h | . . . 4 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
| 9 | 8 | ovexi 7380 | . . 3 ⊢ 𝐻 ∈ V |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
| 11 | crctcsh.q | . . . 4 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
| 12 | ovex 7379 | . . . . 5 ⊢ (0...𝑁) ∈ V | |
| 13 | 12 | mptex 7157 | . . . 4 ⊢ (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ∈ V |
| 14 | 11, 13 | eqeltri 2827 | . . 3 ⊢ 𝑄 ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 𝑄 ∈ V) |
| 16 | 7, 10, 15 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 0cc0 11006 + caddc 11009 ≤ cle 11147 − cmin 11344 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 cyclShift ccsh 14695 Vtxcvtx 28975 iEdgciedg 28976 Walkscwlks 29576 Trailsctrls 29668 Circuitsccrcts 29763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-wlks 29579 df-trls 29670 df-crcts 29765 |
| This theorem is referenced by: crctcshwlkn0 29800 |
| Copyright terms: Public domain | W3C validator |