Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crctcshwlk | Structured version Visualization version GIF version |
Description: Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a walk 〈𝐻, 𝑄〉. (Contributed by AV, 10-Mar-2021.) |
Ref | Expression |
---|---|
crctcsh.v | ⊢ 𝑉 = (Vtx‘𝐺) |
crctcsh.i | ⊢ 𝐼 = (iEdg‘𝐺) |
crctcsh.d | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
crctcsh.n | ⊢ 𝑁 = (♯‘𝐹) |
crctcsh.s | ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) |
crctcsh.h | ⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
crctcsh.q | ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
Ref | Expression |
---|---|
crctcshwlk | ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | crctcsh.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | crctcsh.d | . . . 4 ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) | |
4 | crctcsh.n | . . . 4 ⊢ 𝑁 = (♯‘𝐹) | |
5 | crctcsh.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) | |
6 | crctcsh.h | . . . 4 ⊢ 𝐻 = (𝐹 cyclShift 𝑆) | |
7 | crctcsh.q | . . . 4 ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshlem4 28185 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = 0) → (𝐻 = 𝐹 ∧ 𝑄 = 𝑃)) |
9 | crctistrl 28163 | . . . . . 6 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
10 | trliswlk 28065 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
11 | 3, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
12 | breq12 5079 | . . . . 5 ⊢ ((𝐻 = 𝐹 ∧ 𝑄 = 𝑃) → (𝐻(Walks‘𝐺)𝑄 ↔ 𝐹(Walks‘𝐺)𝑃)) | |
13 | 11, 12 | syl5ibrcom 246 | . . . 4 ⊢ (𝜑 → ((𝐻 = 𝐹 ∧ 𝑄 = 𝑃) → 𝐻(Walks‘𝐺)𝑄)) |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = 0) → ((𝐻 = 𝐹 ∧ 𝑄 = 𝑃) → 𝐻(Walks‘𝐺)𝑄)) |
15 | 8, 14 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑆 = 0) → 𝐻(Walks‘𝐺)𝑄) |
16 | 1, 2, 3, 4, 5, 6, 7 | crctcshwlkn0 28186 | . 2 ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝐻(Walks‘𝐺)𝑄) |
17 | 15, 16 | pm2.61dane 3032 | 1 ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 + caddc 10874 ≤ cle 11010 − cmin 11205 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 cyclShift ccsh 14501 Vtxcvtx 27366 iEdgciedg 27367 Walkscwlks 27963 Trailsctrls 28058 Circuitsccrcts 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 df-csh 14502 df-wlks 27966 df-trls 28060 df-crcts 28154 |
This theorem is referenced by: crctcshtrl 28188 |
Copyright terms: Public domain | W3C validator |