MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlk Structured version   Visualization version   GIF version

Theorem crctcshwlk 29785
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a walk 𝐻, 𝑄. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlk (𝜑𝐻(Walks‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem crctcshwlk
StepHypRef Expression
1 crctcsh.v . . . 4 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . . 4 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . . 4 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . . 4 𝑁 = (♯‘𝐹)
5 crctcsh.s . . . 4 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshlem4 29783 . . 3 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
9 crctistrl 29758 . . . . . 6 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
10 trliswlk 29659 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
113, 9, 103syl 18 . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
12 breq12 5100 . . . . 5 ((𝐻 = 𝐹𝑄 = 𝑃) → (𝐻(Walks‘𝐺)𝑄𝐹(Walks‘𝐺)𝑃))
1311, 12syl5ibrcom 247 . . . 4 (𝜑 → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Walks‘𝐺)𝑄))
1413adantr 480 . . 3 ((𝜑𝑆 = 0) → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Walks‘𝐺)𝑄))
158, 14mpd 15 . 2 ((𝜑𝑆 = 0) → 𝐻(Walks‘𝐺)𝑄)
161, 2, 3, 4, 5, 6, 7crctcshwlkn0 29784 . 2 ((𝜑𝑆 ≠ 0) → 𝐻(Walks‘𝐺)𝑄)
1715, 16pm2.61dane 3012 1 (𝜑𝐻(Walks‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  0cc0 11028   + caddc 11031  cle 11169  cmin 11365  ...cfz 13428  ..^cfzo 13575  chash 14255   cyclShift ccsh 14712  Vtxcvtx 28959  iEdgciedg 28960  Walkscwlks 29560  Trailsctrls 29652  Circuitsccrcts 29747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713  df-wlks 29563  df-trls 29654  df-crcts 29749
This theorem is referenced by:  crctcshtrl  29786
  Copyright terms: Public domain W3C validator