Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoveq123d Structured version   Visualization version   GIF version

Theorem aoveq123d 44670
Description: Equality deduction for operation value, analogous to oveq123d 7296. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
aoveq123d.1 (𝜑𝐹 = 𝐺)
aoveq123d.2 (𝜑𝐴 = 𝐵)
aoveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
aoveq123d (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )

Proof of Theorem aoveq123d
StepHypRef Expression
1 aoveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 aoveq123d.2 . . . 4 (𝜑𝐴 = 𝐵)
3 aoveq123d.3 . . . 4 (𝜑𝐶 = 𝐷)
42, 3opeq12d 4812 . . 3 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
51, 4afveq12d 44625 . 2 (𝜑 → (𝐹'''⟨𝐴, 𝐶⟩) = (𝐺'''⟨𝐵, 𝐷⟩))
6 df-aov 44613 . 2 ((𝐴𝐹𝐶)) = (𝐹'''⟨𝐴, 𝐶⟩)
7 df-aov 44613 . 2 ((𝐵𝐺𝐷)) = (𝐺'''⟨𝐵, 𝐷⟩)
85, 6, 73eqtr4g 2803 1 (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cop 4567  '''cafv 44609   ((caov 44610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612  df-aov 44613
This theorem is referenced by:  csbaovg  44672  rspceaov  44689  faovcl  44692
  Copyright terms: Public domain W3C validator