![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aoveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value, analogous to oveq123d 7429. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aoveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
aoveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
aoveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
aoveq123d | ⊢ (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aoveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | aoveq123d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | aoveq123d.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 2, 3 | opeq12d 4881 | . . 3 ⊢ (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩) |
5 | 1, 4 | afveq12d 45831 | . 2 ⊢ (𝜑 → (𝐹'''⟨𝐴, 𝐶⟩) = (𝐺'''⟨𝐵, 𝐷⟩)) |
6 | df-aov 45819 | . 2 ⊢ ((𝐴𝐹𝐶)) = (𝐹'''⟨𝐴, 𝐶⟩) | |
7 | df-aov 45819 | . 2 ⊢ ((𝐵𝐺𝐷)) = (𝐺'''⟨𝐵, 𝐷⟩) | |
8 | 5, 6, 7 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⟨cop 4634 '''cafv 45815 ((caov 45816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-aiota 45783 df-dfat 45817 df-afv 45818 df-aov 45819 |
This theorem is referenced by: csbaovg 45878 rspceaov 45895 faovcl 45898 |
Copyright terms: Public domain | W3C validator |