Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aoveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value, analogous to oveq123d 7296. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aoveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
aoveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
aoveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
aoveq123d | ⊢ (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aoveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | aoveq123d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | aoveq123d.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 2, 3 | opeq12d 4812 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) |
5 | 1, 4 | afveq12d 44625 | . 2 ⊢ (𝜑 → (𝐹'''〈𝐴, 𝐶〉) = (𝐺'''〈𝐵, 𝐷〉)) |
6 | df-aov 44613 | . 2 ⊢ ((𝐴𝐹𝐶)) = (𝐹'''〈𝐴, 𝐶〉) | |
7 | df-aov 44613 | . 2 ⊢ ((𝐵𝐺𝐷)) = (𝐺'''〈𝐵, 𝐷〉) | |
8 | 5, 6, 7 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4567 '''cafv 44609 ((caov 44610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-aiota 44577 df-dfat 44611 df-afv 44612 df-aov 44613 |
This theorem is referenced by: csbaovg 44672 rspceaov 44689 faovcl 44692 |
Copyright terms: Public domain | W3C validator |