Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoveq123d Structured version   Visualization version   GIF version

Theorem aoveq123d 47128
Description: Equality deduction for operation value, analogous to oveq123d 7452. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
aoveq123d.1 (𝜑𝐹 = 𝐺)
aoveq123d.2 (𝜑𝐴 = 𝐵)
aoveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
aoveq123d (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )

Proof of Theorem aoveq123d
StepHypRef Expression
1 aoveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 aoveq123d.2 . . . 4 (𝜑𝐴 = 𝐵)
3 aoveq123d.3 . . . 4 (𝜑𝐶 = 𝐷)
42, 3opeq12d 4886 . . 3 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
51, 4afveq12d 47083 . 2 (𝜑 → (𝐹'''⟨𝐴, 𝐶⟩) = (𝐺'''⟨𝐵, 𝐷⟩))
6 df-aov 47071 . 2 ((𝐴𝐹𝐶)) = (𝐹'''⟨𝐴, 𝐶⟩)
7 df-aov 47071 . 2 ((𝐵𝐺𝐷)) = (𝐺'''⟨𝐵, 𝐷⟩)
85, 6, 73eqtr4g 2800 1 (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cop 4637  '''cafv 47067   ((caov 47068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070  df-aov 47071
This theorem is referenced by:  csbaovg  47130  rspceaov  47147  faovcl  47150
  Copyright terms: Public domain W3C validator