Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoveq123d Structured version   Visualization version   GIF version

Theorem aoveq123d 45876
Description: Equality deduction for operation value, analogous to oveq123d 7429. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
aoveq123d.1 (𝜑𝐹 = 𝐺)
aoveq123d.2 (𝜑𝐴 = 𝐵)
aoveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
aoveq123d (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )

Proof of Theorem aoveq123d
StepHypRef Expression
1 aoveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 aoveq123d.2 . . . 4 (𝜑𝐴 = 𝐵)
3 aoveq123d.3 . . . 4 (𝜑𝐶 = 𝐷)
42, 3opeq12d 4881 . . 3 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
51, 4afveq12d 45831 . 2 (𝜑 → (𝐹'''⟨𝐴, 𝐶⟩) = (𝐺'''⟨𝐵, 𝐷⟩))
6 df-aov 45819 . 2 ((𝐴𝐹𝐶)) = (𝐹'''⟨𝐴, 𝐶⟩)
7 df-aov 45819 . 2 ((𝐵𝐺𝐷)) = (𝐺'''⟨𝐵, 𝐷⟩)
85, 6, 73eqtr4g 2797 1 (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cop 4634  '''cafv 45815   ((caov 45816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-aiota 45783  df-dfat 45817  df-afv 45818  df-aov 45819
This theorem is referenced by:  csbaovg  45878  rspceaov  45895  faovcl  45898
  Copyright terms: Public domain W3C validator