Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aoveq123d Structured version   Visualization version   GIF version

Theorem aoveq123d 47166
Description: Equality deduction for operation value, analogous to oveq123d 7370. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
aoveq123d.1 (𝜑𝐹 = 𝐺)
aoveq123d.2 (𝜑𝐴 = 𝐵)
aoveq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
aoveq123d (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )

Proof of Theorem aoveq123d
StepHypRef Expression
1 aoveq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 aoveq123d.2 . . . 4 (𝜑𝐴 = 𝐵)
3 aoveq123d.3 . . . 4 (𝜑𝐶 = 𝐷)
42, 3opeq12d 4832 . . 3 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
51, 4afveq12d 47121 . 2 (𝜑 → (𝐹'''⟨𝐴, 𝐶⟩) = (𝐺'''⟨𝐵, 𝐷⟩))
6 df-aov 47109 . 2 ((𝐴𝐹𝐶)) = (𝐹'''⟨𝐴, 𝐶⟩)
7 df-aov 47109 . 2 ((𝐵𝐺𝐷)) = (𝐺'''⟨𝐵, 𝐷⟩)
85, 6, 73eqtr4g 2789 1 (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4583  '''cafv 47105   ((caov 47106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-aiota 47073  df-dfat 47107  df-afv 47108  df-aov 47109
This theorem is referenced by:  csbaovg  47168  rspceaov  47185  faovcl  47188
  Copyright terms: Public domain W3C validator