| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfaov | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for operation value, analogous to nfov 7371. To prove a deduction version of this analogous to nfovd 7370 is not quickly possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of alternative operation values is based on are not available (see nfafv 47146). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfaov.2 | ⊢ Ⅎ𝑥𝐴 |
| nfaov.3 | ⊢ Ⅎ𝑥𝐹 |
| nfaov.4 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfaov | ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47131 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | nfaov.3 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfaov.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfaov.4 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 3, 4 | nfop 4839 | . . 3 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| 6 | 2, 5 | nfafv 47146 | . 2 ⊢ Ⅎ𝑥(𝐹'''〈𝐴, 𝐵〉) |
| 7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 〈cop 4580 '''cafv 47127 ((caov 47128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6433 df-fun 6479 df-fv 6485 df-aiota 47095 df-dfat 47129 df-afv 47130 df-aov 47131 |
| This theorem is referenced by: csbaovg 47190 |
| Copyright terms: Public domain | W3C validator |