| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfaov | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for operation value, analogous to nfov 7435. To prove a deduction version of this analogous to nfovd 7434 is not quickly possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of alternative operation values is based on are not available (see nfafv 47165). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfaov.2 | ⊢ Ⅎ𝑥𝐴 |
| nfaov.3 | ⊢ Ⅎ𝑥𝐹 |
| nfaov.4 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfaov | ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47150 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | nfaov.3 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfaov.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfaov.4 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 3, 4 | nfop 4865 | . . 3 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| 6 | 2, 5 | nfafv 47165 | . 2 ⊢ Ⅎ𝑥(𝐹'''〈𝐴, 𝐵〉) |
| 7 | 1, 6 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 〈cop 4607 '''cafv 47146 ((caov 47147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-aiota 47114 df-dfat 47148 df-afv 47149 df-aov 47150 |
| This theorem is referenced by: csbaovg 47209 |
| Copyright terms: Public domain | W3C validator |