| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfaov | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for operation value, analogous to nfov 7383. To prove a deduction version of this analogous to nfovd 7382 is not quickly possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of alternative operation values is based on are not available (see nfafv 47121). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nfaov.2 | ⊢ Ⅎ𝑥𝐴 |
| nfaov.3 | ⊢ Ⅎ𝑥𝐹 |
| nfaov.4 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfaov | ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47106 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | nfaov.3 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfaov.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfaov.4 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 3, 4 | nfop 4843 | . . 3 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| 6 | 2, 5 | nfafv 47121 | . 2 ⊢ Ⅎ𝑥(𝐹'''〈𝐴, 𝐵〉) |
| 7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 〈cop 4585 '''cafv 47102 ((caov 47103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-aiota 47070 df-dfat 47104 df-afv 47105 df-aov 47106 |
| This theorem is referenced by: csbaovg 47165 |
| Copyright terms: Public domain | W3C validator |