![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopeq1a | Structured version Visualization version GIF version |
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair ⟨𝑥, 𝑦⟩ in 𝐵 (analogue of csbeq1a 3907). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
csbopeq1a | ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 3478 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 7985 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2738 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd ‘𝐴)) |
5 | csbeq1a 3907 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
7 | 1, 2 | op1std 7984 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2738 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st ‘𝐴)) |
9 | csbeq1a 3907 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
11 | 6, 10 | eqtr2d 2773 | 1 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⦋csb 3893 ⟨cop 4634 ‘cfv 6543 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: dfmpo 8087 f1od2 31941 wdom2d2 41764 |
Copyright terms: Public domain | W3C validator |