MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopeq1a Structured version   Visualization version   GIF version

Theorem csbopeq1a 7891
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair 𝑥, 𝑦 in 𝐵 (analogue of csbeq1a 3846). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
2 vex 3436 . . . . 5 𝑦 ∈ V
31, 2op2ndd 7842 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2744 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 csbeq1a 3846 . . 3 (𝑦 = (2nd𝐴) → 𝐵 = (2nd𝐴) / 𝑦𝐵)
64, 5syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = (2nd𝐴) / 𝑦𝐵)
71, 2op1std 7841 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2744 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 csbeq1a 3846 . . 3 (𝑥 = (1st𝐴) → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
108, 9syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
116, 10eqtr2d 2779 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  csb 3832  cop 4567  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  dfmpo  7942  f1od2  31056  wdom2d2  40857
  Copyright terms: Public domain W3C validator