![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopeq1a | Structured version Visualization version GIF version |
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair ⟨𝑥, 𝑦⟩ in 𝐵 (analogue of csbeq1a 3898). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
csbopeq1a | ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3467 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 3467 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 8002 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2731 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd ‘𝐴)) |
5 | csbeq1a 3898 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
7 | 1, 2 | op1std 8001 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2731 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st ‘𝐴)) |
9 | csbeq1a 3898 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
11 | 6, 10 | eqtr2d 2766 | 1 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⦋csb 3884 ⟨cop 4630 ‘cfv 6543 1st c1st 7989 2nd c2nd 7990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7991 df-2nd 7992 |
This theorem is referenced by: dfmpo 8105 f1od2 32548 wdom2d2 42521 |
Copyright terms: Public domain | W3C validator |