![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopeq1a | Structured version Visualization version GIF version |
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair ⟨𝑥, 𝑦⟩ in 𝐵 (analogue of csbeq1a 3902). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
csbopeq1a | ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3472 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 3472 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 7985 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2732 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd ‘𝐴)) |
5 | csbeq1a 3902 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
7 | 1, 2 | op1std 7984 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2732 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st ‘𝐴)) |
9 | csbeq1a 3902 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
11 | 6, 10 | eqtr2d 2767 | 1 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⦋csb 3888 ⟨cop 4629 ‘cfv 6537 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fv 6545 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: dfmpo 8088 f1od2 32453 wdom2d2 42352 |
Copyright terms: Public domain | W3C validator |