MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcopeq1a Structured version   Visualization version   GIF version

Theorem sbcopeq1a 7879
Description: Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a 3726 that avoids the existential quantifiers of copsexg 5403). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
sbcopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))

Proof of Theorem sbcopeq1a
StepHypRef Expression
1 vex 3433 . . . . 5 𝑥 ∈ V
2 vex 3433 . . . . 5 𝑦 ∈ V
31, 2op2ndd 7831 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2744 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 sbceq1a 3726 . . 3 (𝑦 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑦]𝜑))
64, 5syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑[(2nd𝐴) / 𝑦]𝜑))
71, 2op1std 7830 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2744 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 sbceq1a 3726 . . 3 (𝑥 = (1st𝐴) → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
108, 9syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(2nd𝐴) / 𝑦]𝜑[(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑))
116, 10bitr2d 279 1 (𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsbc 3715  cop 4567  cfv 6426  1st c1st 7818  2nd c2nd 7819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-iota 6384  df-fun 6428  df-fv 6434  df-1st 7820  df-2nd 7821
This theorem is referenced by:  dfopab2  7881  dfoprab3s  7882  ralxpes  33686  frpoins3xpg  33795
  Copyright terms: Public domain W3C validator