| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcopeq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a 3781 that avoids the existential quantifiers of copsexg 5471). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| sbcopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | op2ndd 8004 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
| 4 | 3 | eqcomd 2742 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
| 5 | sbceq1a 3781 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [(2nd ‘𝐴) / 𝑦]𝜑)) |
| 7 | 1, 2 | op1std 8003 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
| 8 | 7 | eqcomd 2742 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
| 9 | sbceq1a 3781 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(2nd ‘𝐴) / 𝑦]𝜑 ↔ [(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑)) |
| 11 | 6, 10 | bitr2d 280 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3770 〈cop 4612 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: dfopab2 8056 dfoprab3s 8057 ralxpes 8140 frpoins3xpg 8144 |
| Copyright terms: Public domain | W3C validator |