| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12245 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 2 | nnrecre 12204 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
| 4 | halfre 12371 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 5 | 2lt4 12332 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12246 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2pos 12265 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 4pos 12269 | . . . . . 6 ⊢ 0 < 4 | |
| 10 | 6, 7, 8, 9 | ltrecii 12075 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
| 11 | 5, 10 | mpbi 230 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
| 12 | iccen 13434 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
| 13 | 3, 4, 11, 12 | mp3an 1463 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
| 14 | ovex 7402 | . . . 4 ⊢ (0(,)1) ∈ V | |
| 15 | 0xr 11197 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 16 | 1xr 11209 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 17 | 7, 9 | recgt0ii 12065 | . . . . 5 ⊢ 0 < (1 / 4) |
| 18 | halflt1 12375 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 19 | iccssioo 13352 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
| 20 | 15, 16, 17, 18, 19 | mp4an 693 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
| 21 | ssdomg 8948 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
| 22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
| 23 | endomtr 8960 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
| 24 | 13, 22, 23 | mp2an 692 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
| 25 | ovex 7402 | . . 3 ⊢ (0[,]1) ∈ V | |
| 26 | ioossicc 13370 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 27 | ssdomg 8948 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
| 28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
| 29 | sbth 9038 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
| 30 | 24, 28, 29 | mp2an 692 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 (class class class)co 7369 ≈ cen 8892 ≼ cdom 8893 ℝcr 11043 0cc0 11044 1c1 11045 ℝ*cxr 11183 < clt 11184 / cdiv 11811 ℕcn 12162 2c2 12217 4c4 12219 (,)cioo 13282 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-rp 12928 df-ioo 13286 df-icc 13289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |