| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12211 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 2 | nnrecre 12170 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
| 4 | halfre 12337 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 5 | 2lt4 12298 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 2re 12202 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12212 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2pos 12231 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 4pos 12235 | . . . . . 6 ⊢ 0 < 4 | |
| 10 | 6, 7, 8, 9 | ltrecii 12041 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
| 11 | 5, 10 | mpbi 230 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
| 12 | iccen 13400 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
| 13 | 3, 4, 11, 12 | mp3an 1463 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
| 14 | ovex 7382 | . . . 4 ⊢ (0(,)1) ∈ V | |
| 15 | 0xr 11162 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 16 | 1xr 11174 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 17 | 7, 9 | recgt0ii 12031 | . . . . 5 ⊢ 0 < (1 / 4) |
| 18 | halflt1 12341 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 19 | iccssioo 13318 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
| 20 | 15, 16, 17, 18, 19 | mp4an 693 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
| 21 | ssdomg 8925 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
| 22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
| 23 | endomtr 8937 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
| 24 | 13, 22, 23 | mp2an 692 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
| 25 | ovex 7382 | . . 3 ⊢ (0[,]1) ∈ V | |
| 26 | ioossicc 13336 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 27 | ssdomg 8925 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
| 28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
| 29 | sbth 9014 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
| 30 | 24, 28, 29 | mp2an 692 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 (class class class)co 7349 ≈ cen 8869 ≼ cdom 8870 ℝcr 11008 0cc0 11009 1c1 11010 ℝ*cxr 11148 < clt 11149 / cdiv 11777 ℕcn 12128 2c2 12183 4c4 12185 (,)cioo 13248 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-rp 12894 df-ioo 13252 df-icc 13255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |