Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccioo01 Structured version   Visualization version   GIF version

Theorem iccioo01 36196
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.)
Assertion
Ref Expression
iccioo01 (0[,]1) ≈ (0(,)1)

Proof of Theorem iccioo01
StepHypRef Expression
1 4nn 12291 . . . . 5 4 ∈ ℕ
2 nnrecre 12250 . . . . 5 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
31, 2ax-mp 5 . . . 4 (1 / 4) ∈ ℝ
4 halfre 12422 . . . 4 (1 / 2) ∈ ℝ
5 2lt4 12383 . . . . 5 2 < 4
6 2re 12282 . . . . . 6 2 ∈ ℝ
7 4re 12292 . . . . . 6 4 ∈ ℝ
8 2pos 12311 . . . . . 6 0 < 2
9 4pos 12315 . . . . . 6 0 < 4
106, 7, 8, 9ltrecii 12126 . . . . 5 (2 < 4 ↔ (1 / 4) < (1 / 2))
115, 10mpbi 229 . . . 4 (1 / 4) < (1 / 2)
12 iccen 13470 . . . 4 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2)))
133, 4, 11, 12mp3an 1461 . . 3 (0[,]1) ≈ ((1 / 4)[,](1 / 2))
14 ovex 7438 . . . 4 (0(,)1) ∈ V
15 0xr 11257 . . . . 5 0 ∈ ℝ*
16 1xr 11269 . . . . 5 1 ∈ ℝ*
177, 9recgt0ii 12116 . . . . 5 0 < (1 / 4)
18 halflt1 12426 . . . . 5 (1 / 2) < 1
19 iccssioo 13389 . . . . 5 (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1))
2015, 16, 17, 18, 19mp4an 691 . . . 4 ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)
21 ssdomg 8992 . . . 4 ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1)))
2214, 20, 21mp2 9 . . 3 ((1 / 4)[,](1 / 2)) ≼ (0(,)1)
23 endomtr 9004 . . 3 (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1))
2413, 22, 23mp2an 690 . 2 (0[,]1) ≼ (0(,)1)
25 ovex 7438 . . 3 (0[,]1) ∈ V
26 ioossicc 13406 . . 3 (0(,)1) ⊆ (0[,]1)
27 ssdomg 8992 . . 3 ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1)))
2825, 26, 27mp2 9 . 2 (0(,)1) ≼ (0[,]1)
29 sbth 9089 . 2 (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1))
3024, 28, 29mp2an 690 1 (0[,]1) ≈ (0(,)1)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3474  wss 3947   class class class wbr 5147  (class class class)co 7405  cen 8932  cdom 8933  cr 11105  0cc0 11106  1c1 11107  *cxr 11243   < clt 11244   / cdiv 11867  cn 12208  2c2 12263  4c4 12265  (,)cioo 13320  [,]cicc 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-rp 12971  df-ioo 13324  df-icc 13327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator