Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccioo01 Structured version   Visualization version   GIF version

Theorem iccioo01 37328
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.)
Assertion
Ref Expression
iccioo01 (0[,]1) ≈ (0(,)1)

Proof of Theorem iccioo01
StepHypRef Expression
1 4nn 12349 . . . . 5 4 ∈ ℕ
2 nnrecre 12308 . . . . 5 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
31, 2ax-mp 5 . . . 4 (1 / 4) ∈ ℝ
4 halfre 12480 . . . 4 (1 / 2) ∈ ℝ
5 2lt4 12441 . . . . 5 2 < 4
6 2re 12340 . . . . . 6 2 ∈ ℝ
7 4re 12350 . . . . . 6 4 ∈ ℝ
8 2pos 12369 . . . . . 6 0 < 2
9 4pos 12373 . . . . . 6 0 < 4
106, 7, 8, 9ltrecii 12184 . . . . 5 (2 < 4 ↔ (1 / 4) < (1 / 2))
115, 10mpbi 230 . . . 4 (1 / 4) < (1 / 2)
12 iccen 13537 . . . 4 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2)))
133, 4, 11, 12mp3an 1463 . . 3 (0[,]1) ≈ ((1 / 4)[,](1 / 2))
14 ovex 7464 . . . 4 (0(,)1) ∈ V
15 0xr 11308 . . . . 5 0 ∈ ℝ*
16 1xr 11320 . . . . 5 1 ∈ ℝ*
177, 9recgt0ii 12174 . . . . 5 0 < (1 / 4)
18 halflt1 12484 . . . . 5 (1 / 2) < 1
19 iccssioo 13456 . . . . 5 (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1))
2015, 16, 17, 18, 19mp4an 693 . . . 4 ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)
21 ssdomg 9040 . . . 4 ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1)))
2214, 20, 21mp2 9 . . 3 ((1 / 4)[,](1 / 2)) ≼ (0(,)1)
23 endomtr 9052 . . 3 (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1))
2413, 22, 23mp2an 692 . 2 (0[,]1) ≼ (0(,)1)
25 ovex 7464 . . 3 (0[,]1) ∈ V
26 ioossicc 13473 . . 3 (0(,)1) ⊆ (0[,]1)
27 ssdomg 9040 . . 3 ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1)))
2825, 26, 27mp2 9 . 2 (0(,)1) ≼ (0[,]1)
29 sbth 9133 . 2 (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1))
3024, 28, 29mp2an 692 1 (0[,]1) ≈ (0(,)1)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143  (class class class)co 7431  cen 8982  cdom 8983  cr 11154  0cc0 11155  1c1 11156  *cxr 11294   < clt 11295   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  (,)cioo 13387  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-rp 13035  df-ioo 13391  df-icc 13394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator