![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version |
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
Ref | Expression |
---|---|
iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 12291 | . . . . 5 ⊢ 4 ∈ ℕ | |
2 | nnrecre 12250 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
4 | halfre 12422 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
5 | 2lt4 12383 | . . . . 5 ⊢ 2 < 4 | |
6 | 2re 12282 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 12292 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2pos 12311 | . . . . . 6 ⊢ 0 < 2 | |
9 | 4pos 12315 | . . . . . 6 ⊢ 0 < 4 | |
10 | 6, 7, 8, 9 | ltrecii 12126 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
11 | 5, 10 | mpbi 229 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
12 | iccen 13470 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
13 | 3, 4, 11, 12 | mp3an 1461 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
14 | ovex 7438 | . . . 4 ⊢ (0(,)1) ∈ V | |
15 | 0xr 11257 | . . . . 5 ⊢ 0 ∈ ℝ* | |
16 | 1xr 11269 | . . . . 5 ⊢ 1 ∈ ℝ* | |
17 | 7, 9 | recgt0ii 12116 | . . . . 5 ⊢ 0 < (1 / 4) |
18 | halflt1 12426 | . . . . 5 ⊢ (1 / 2) < 1 | |
19 | iccssioo 13389 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
20 | 15, 16, 17, 18, 19 | mp4an 691 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
21 | ssdomg 8992 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
23 | endomtr 9004 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
24 | 13, 22, 23 | mp2an 690 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
25 | ovex 7438 | . . 3 ⊢ (0[,]1) ∈ V | |
26 | ioossicc 13406 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
27 | ssdomg 8992 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
29 | sbth 9089 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
30 | 24, 28, 29 | mp2an 690 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7405 ≈ cen 8932 ≼ cdom 8933 ℝcr 11105 0cc0 11106 1c1 11107 ℝ*cxr 11243 < clt 11244 / cdiv 11867 ℕcn 12208 2c2 12263 4c4 12265 (,)cioo 13320 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-rp 12971 df-ioo 13324 df-icc 13327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |