Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccioo01 Structured version   Visualization version   GIF version

Theorem iccioo01 37310
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.)
Assertion
Ref Expression
iccioo01 (0[,]1) ≈ (0(,)1)

Proof of Theorem iccioo01
StepHypRef Expression
1 4nn 12347 . . . . 5 4 ∈ ℕ
2 nnrecre 12306 . . . . 5 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
31, 2ax-mp 5 . . . 4 (1 / 4) ∈ ℝ
4 halfre 12478 . . . 4 (1 / 2) ∈ ℝ
5 2lt4 12439 . . . . 5 2 < 4
6 2re 12338 . . . . . 6 2 ∈ ℝ
7 4re 12348 . . . . . 6 4 ∈ ℝ
8 2pos 12367 . . . . . 6 0 < 2
9 4pos 12371 . . . . . 6 0 < 4
106, 7, 8, 9ltrecii 12182 . . . . 5 (2 < 4 ↔ (1 / 4) < (1 / 2))
115, 10mpbi 230 . . . 4 (1 / 4) < (1 / 2)
12 iccen 13534 . . . 4 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2)))
133, 4, 11, 12mp3an 1460 . . 3 (0[,]1) ≈ ((1 / 4)[,](1 / 2))
14 ovex 7464 . . . 4 (0(,)1) ∈ V
15 0xr 11306 . . . . 5 0 ∈ ℝ*
16 1xr 11318 . . . . 5 1 ∈ ℝ*
177, 9recgt0ii 12172 . . . . 5 0 < (1 / 4)
18 halflt1 12482 . . . . 5 (1 / 2) < 1
19 iccssioo 13453 . . . . 5 (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1))
2015, 16, 17, 18, 19mp4an 693 . . . 4 ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)
21 ssdomg 9039 . . . 4 ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1)))
2214, 20, 21mp2 9 . . 3 ((1 / 4)[,](1 / 2)) ≼ (0(,)1)
23 endomtr 9051 . . 3 (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1))
2413, 22, 23mp2an 692 . 2 (0[,]1) ≼ (0(,)1)
25 ovex 7464 . . 3 (0[,]1) ∈ V
26 ioossicc 13470 . . 3 (0(,)1) ⊆ (0[,]1)
27 ssdomg 9039 . . 3 ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1)))
2825, 26, 27mp2 9 . 2 (0(,)1) ≼ (0[,]1)
29 sbth 9132 . 2 (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1))
3024, 28, 29mp2an 692 1 (0[,]1) ≈ (0(,)1)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  wss 3963   class class class wbr 5148  (class class class)co 7431  cen 8981  cdom 8982  cr 11152  0cc0 11153  1c1 11154  *cxr 11292   < clt 11293   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  (,)cioo 13384  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-rp 13033  df-ioo 13388  df-icc 13391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator