| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12323 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 2 | nnrecre 12282 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
| 4 | halfre 12454 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 5 | 2lt4 12415 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 2re 12314 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12324 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2pos 12343 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 4pos 12347 | . . . . . 6 ⊢ 0 < 4 | |
| 10 | 6, 7, 8, 9 | ltrecii 12158 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
| 11 | 5, 10 | mpbi 230 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
| 12 | iccen 13514 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
| 13 | 3, 4, 11, 12 | mp3an 1463 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
| 14 | ovex 7438 | . . . 4 ⊢ (0(,)1) ∈ V | |
| 15 | 0xr 11282 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 16 | 1xr 11294 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 17 | 7, 9 | recgt0ii 12148 | . . . . 5 ⊢ 0 < (1 / 4) |
| 18 | halflt1 12458 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 19 | iccssioo 13432 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
| 20 | 15, 16, 17, 18, 19 | mp4an 693 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
| 21 | ssdomg 9014 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
| 22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
| 23 | endomtr 9026 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
| 24 | 13, 22, 23 | mp2an 692 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
| 25 | ovex 7438 | . . 3 ⊢ (0[,]1) ∈ V | |
| 26 | ioossicc 13450 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 27 | ssdomg 9014 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
| 28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
| 29 | sbth 9107 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
| 30 | 24, 28, 29 | mp2an 692 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 (class class class)co 7405 ≈ cen 8956 ≼ cdom 8957 ℝcr 11128 0cc0 11129 1c1 11130 ℝ*cxr 11268 < clt 11269 / cdiv 11894 ℕcn 12240 2c2 12295 4c4 12297 (,)cioo 13362 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-rp 13009 df-ioo 13366 df-icc 13369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |