![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version |
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
Ref | Expression |
---|---|
iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 12347 | . . . . 5 ⊢ 4 ∈ ℕ | |
2 | nnrecre 12306 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
4 | halfre 12478 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
5 | 2lt4 12439 | . . . . 5 ⊢ 2 < 4 | |
6 | 2re 12338 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 12348 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2pos 12367 | . . . . . 6 ⊢ 0 < 2 | |
9 | 4pos 12371 | . . . . . 6 ⊢ 0 < 4 | |
10 | 6, 7, 8, 9 | ltrecii 12182 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
11 | 5, 10 | mpbi 229 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
12 | iccen 13528 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
13 | 3, 4, 11, 12 | mp3an 1458 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
14 | ovex 7457 | . . . 4 ⊢ (0(,)1) ∈ V | |
15 | 0xr 11311 | . . . . 5 ⊢ 0 ∈ ℝ* | |
16 | 1xr 11323 | . . . . 5 ⊢ 1 ∈ ℝ* | |
17 | 7, 9 | recgt0ii 12172 | . . . . 5 ⊢ 0 < (1 / 4) |
18 | halflt1 12482 | . . . . 5 ⊢ (1 / 2) < 1 | |
19 | iccssioo 13447 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
20 | 15, 16, 17, 18, 19 | mp4an 691 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
21 | ssdomg 9031 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
23 | endomtr 9043 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
24 | 13, 22, 23 | mp2an 690 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
25 | ovex 7457 | . . 3 ⊢ (0[,]1) ∈ V | |
26 | ioossicc 13464 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
27 | ssdomg 9031 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
29 | sbth 9131 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
30 | 24, 28, 29 | mp2an 690 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 (class class class)co 7424 ≈ cen 8971 ≼ cdom 8972 ℝcr 11157 0cc0 11158 1c1 11159 ℝ*cxr 11297 < clt 11298 / cdiv 11921 ℕcn 12264 2c2 12319 4c4 12321 (,)cioo 13378 [,]cicc 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-rp 13029 df-ioo 13382 df-icc 13385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |