Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version |
Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
Ref | Expression |
---|---|
iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 11986 | . . . . 5 ⊢ 4 ∈ ℕ | |
2 | nnrecre 11945 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
4 | halfre 12117 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
5 | 2lt4 12078 | . . . . 5 ⊢ 2 < 4 | |
6 | 2re 11977 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 11987 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2pos 12006 | . . . . . 6 ⊢ 0 < 2 | |
9 | 4pos 12010 | . . . . . 6 ⊢ 0 < 4 | |
10 | 6, 7, 8, 9 | ltrecii 11821 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
11 | 5, 10 | mpbi 229 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
12 | iccen 13158 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
13 | 3, 4, 11, 12 | mp3an 1459 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
14 | ovex 7288 | . . . 4 ⊢ (0(,)1) ∈ V | |
15 | 0xr 10953 | . . . . 5 ⊢ 0 ∈ ℝ* | |
16 | 1xr 10965 | . . . . 5 ⊢ 1 ∈ ℝ* | |
17 | 7, 9 | recgt0ii 11811 | . . . . 5 ⊢ 0 < (1 / 4) |
18 | halflt1 12121 | . . . . 5 ⊢ (1 / 2) < 1 | |
19 | iccssioo 13077 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
20 | 15, 16, 17, 18, 19 | mp4an 689 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
21 | ssdomg 8741 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
23 | endomtr 8753 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
24 | 13, 22, 23 | mp2an 688 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
25 | ovex 7288 | . . 3 ⊢ (0[,]1) ∈ V | |
26 | ioossicc 13094 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
27 | ssdomg 8741 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
29 | sbth 8833 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
30 | 24, 28, 29 | mp2an 688 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 ≈ cen 8688 ≼ cdom 8689 ℝcr 10801 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 / cdiv 11562 ℕcn 11903 2c2 11958 4c4 11960 (,)cioo 13008 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-rp 12660 df-ioo 13012 df-icc 13015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |