| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccioo01 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| iccioo01 | ⊢ (0[,]1) ≈ (0(,)1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12269 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 2 | nnrecre 12228 | . . . . 5 ⊢ (4 ∈ ℕ → (1 / 4) ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1 / 4) ∈ ℝ |
| 4 | halfre 12395 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 5 | 2lt4 12356 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12270 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2pos 12289 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 4pos 12293 | . . . . . 6 ⊢ 0 < 4 | |
| 10 | 6, 7, 8, 9 | ltrecii 12099 | . . . . 5 ⊢ (2 < 4 ↔ (1 / 4) < (1 / 2)) |
| 11 | 5, 10 | mpbi 230 | . . . 4 ⊢ (1 / 4) < (1 / 2) |
| 12 | iccen 13458 | . . . 4 ⊢ (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (1 / 4) < (1 / 2)) → (0[,]1) ≈ ((1 / 4)[,](1 / 2))) | |
| 13 | 3, 4, 11, 12 | mp3an 1463 | . . 3 ⊢ (0[,]1) ≈ ((1 / 4)[,](1 / 2)) |
| 14 | ovex 7420 | . . . 4 ⊢ (0(,)1) ∈ V | |
| 15 | 0xr 11221 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 16 | 1xr 11233 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 17 | 7, 9 | recgt0ii 12089 | . . . . 5 ⊢ 0 < (1 / 4) |
| 18 | halflt1 12399 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 19 | iccssioo 13376 | . . . . 5 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 < (1 / 4) ∧ (1 / 2) < 1)) → ((1 / 4)[,](1 / 2)) ⊆ (0(,)1)) | |
| 20 | 15, 16, 17, 18, 19 | mp4an 693 | . . . 4 ⊢ ((1 / 4)[,](1 / 2)) ⊆ (0(,)1) |
| 21 | ssdomg 8971 | . . . 4 ⊢ ((0(,)1) ∈ V → (((1 / 4)[,](1 / 2)) ⊆ (0(,)1) → ((1 / 4)[,](1 / 2)) ≼ (0(,)1))) | |
| 22 | 14, 20, 21 | mp2 9 | . . 3 ⊢ ((1 / 4)[,](1 / 2)) ≼ (0(,)1) |
| 23 | endomtr 8983 | . . 3 ⊢ (((0[,]1) ≈ ((1 / 4)[,](1 / 2)) ∧ ((1 / 4)[,](1 / 2)) ≼ (0(,)1)) → (0[,]1) ≼ (0(,)1)) | |
| 24 | 13, 22, 23 | mp2an 692 | . 2 ⊢ (0[,]1) ≼ (0(,)1) |
| 25 | ovex 7420 | . . 3 ⊢ (0[,]1) ∈ V | |
| 26 | ioossicc 13394 | . . 3 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 27 | ssdomg 8971 | . . 3 ⊢ ((0[,]1) ∈ V → ((0(,)1) ⊆ (0[,]1) → (0(,)1) ≼ (0[,]1))) | |
| 28 | 25, 26, 27 | mp2 9 | . 2 ⊢ (0(,)1) ≼ (0[,]1) |
| 29 | sbth 9061 | . 2 ⊢ (((0[,]1) ≼ (0(,)1) ∧ (0(,)1) ≼ (0[,]1)) → (0[,]1) ≈ (0(,)1)) | |
| 30 | 24, 28, 29 | mp2an 692 | 1 ⊢ (0[,]1) ≈ (0(,)1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 (class class class)co 7387 ≈ cen 8915 ≼ cdom 8916 ℝcr 11067 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 / cdiv 11835 ℕcn 12186 2c2 12241 4c4 12243 (,)cioo 13306 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-rp 12952 df-ioo 13310 df-icc 13313 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |