MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycliscrct Structured version   Visualization version   GIF version

Theorem cycliscrct 29777
Description: A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
cycliscrct (𝐹(Cycles‘𝐺)𝑃𝐹(Circuits‘𝐺)𝑃)

Proof of Theorem cycliscrct
StepHypRef Expression
1 pthistrl 29701 . . 3 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
21anim1i 615 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
3 iscycl 29769 . 2 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 iscrct 29768 . 2 (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
52, 3, 43imtr4i 292 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Circuits‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541   class class class wbr 5089  cfv 6481  0cc0 11006  chash 14237  Trailsctrls 29667  Pathscpths 29688  Circuitsccrcts 29762  Cyclesccycls 29763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-trls 29669  df-pths 29692  df-crcts 29764  df-cycls 29765
This theorem is referenced by:  usgrn2cycl  29787
  Copyright terms: Public domain W3C validator