MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycliscrct Structured version   Visualization version   GIF version

Theorem cycliscrct 29786
Description: A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
cycliscrct (𝐹(Cycles‘𝐺)𝑃𝐹(Circuits‘𝐺)𝑃)

Proof of Theorem cycliscrct
StepHypRef Expression
1 pthistrl 29710 . . 3 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
21anim1i 615 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
3 iscycl 29778 . 2 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 iscrct 29777 . 2 (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
52, 3, 43imtr4i 292 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Circuits‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540   class class class wbr 5124  cfv 6536  0cc0 11134  chash 14353  Trailsctrls 29675  Pathscpths 29697  Circuitsccrcts 29771  Cyclesccycls 29772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-trls 29677  df-pths 29701  df-crcts 29773  df-cycls 29774
This theorem is referenced by:  usgrn2cycl  29796
  Copyright terms: Public domain W3C validator