MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycliswlk Structured version   Visualization version   GIF version

Theorem cycliswlk 29771
Description: A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
cycliswlk (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem cycliswlk
StepHypRef Expression
1 cyclispth 29770 . 2 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
2 pthiswlk 29698 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5086  cfv 6476  Walkscwlks 29570  Pathscpths 29683  Cyclesccycls 29758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-wlks 29573  df-trls 29664  df-pths 29687  df-cycls 29760
This theorem is referenced by:  lfgrn1cycl  29778  usgrgt2cycl  35166  usgrcyclgt2v  35167  acycgrcycl  35183  acycgr0v  35184  acycgr1v  35185  prclisacycgr  35187  upgrimcycls  47942  cycldlenngric  47959
  Copyright terms: Public domain W3C validator