|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cycliswlk | Structured version Visualization version GIF version | ||
| Description: A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 31-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| cycliswlk | ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cyclispth 29817 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 2 | pthiswlk 29745 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 class class class wbr 5143 ‘cfv 6561 Walkscwlks 29614 Pathscpths 29730 Cyclesccycls 29805 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-wlks 29617 df-trls 29710 df-pths 29734 df-cycls 29807 | 
| This theorem is referenced by: lfgrn1cycl 29825 usgrgt2cycl 35135 usgrcyclgt2v 35136 acycgrcycl 35152 acycgr0v 35153 acycgr1v 35154 prclisacycgr 35156 | 
| Copyright terms: Public domain | W3C validator |