MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycliswlk Structured version   Visualization version   GIF version

Theorem cycliswlk 29831
Description: A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
cycliswlk (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem cycliswlk
StepHypRef Expression
1 cyclispth 29830 . 2 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
2 pthiswlk 29760 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5148  cfv 6563  Walkscwlks 29629  Pathscpths 29745  Cyclesccycls 29818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-wlks 29632  df-trls 29725  df-pths 29749  df-cycls 29820
This theorem is referenced by:  lfgrn1cycl  29835  usgrgt2cycl  35115  usgrcyclgt2v  35116  acycgrcycl  35132  acycgr0v  35133  acycgr1v  35134  prclisacycgr  35136
  Copyright terms: Public domain W3C validator