MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthistrl Structured version   Visualization version   GIF version

Theorem pthistrl 28093
Description: A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
pthistrl (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)

Proof of Theorem pthistrl
StepHypRef Expression
1 ispth 28091 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
21simp1bi 1144 1 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3886  c0 4256  {cpr 4563   class class class wbr 5074  ccnv 5588  cres 5591  cima 5592  Fun wfun 6427  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  ..^cfzo 13382  chash 14044  Trailsctrls 28058  Pathscpths 28080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-trls 28060  df-pths 28084
This theorem is referenced by:  pthiswlk  28095  pthonpth  28116  isspthonpth  28117  usgr2trlspth  28129  usgr2pthspth  28130  cycliscrct  28167  spthcycl  33091
  Copyright terms: Public domain W3C validator