![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pthistrl | Structured version Visualization version GIF version |
Description: A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
pthistrl | β’ (πΉ(PathsβπΊ)π β πΉ(TrailsβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 29489 | . 2 β’ (πΉ(PathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπΉ))) β§ ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β )) | |
2 | 1 | simp1bi 1142 | 1 β’ (πΉ(PathsβπΊ)π β πΉ(TrailsβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β© cin 3942 β c0 4317 {cpr 4625 class class class wbr 5141 β‘ccnv 5668 βΎ cres 5671 β cima 5672 Fun wfun 6531 βcfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 ..^cfzo 13633 β―chash 14295 Trailsctrls 29456 Pathscpths 29478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-trls 29458 df-pths 29482 |
This theorem is referenced by: pthiswlk 29493 pthonpth 29514 isspthonpth 29515 usgr2trlspth 29527 usgr2pthspth 29528 cycliscrct 29565 spthcycl 34648 |
Copyright terms: Public domain | W3C validator |