Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphopab Structured version   Visualization version   GIF version

Theorem fgraphopab 43215
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphopab (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Distinct variable groups:   𝐹,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏

Proof of Theorem fgraphopab
StepHypRef Expression
1 fssxp 6763 . . . 4 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 dfss2 3969 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) ↔ (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
31, 2sylib 218 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
4 ffn 6736 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 dffn5 6967 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
64, 5sylib 218 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
76ineq1d 4219 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
83, 7eqtr3d 2779 . 2 (𝐹:𝐴𝐵𝐹 = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
9 df-mpt 5226 . . . 4 (𝑎𝐴 ↦ (𝐹𝑎)) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))}
10 df-xp 5691 . . . 4 (𝐴 × 𝐵) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}
119, 10ineq12i 4218 . . 3 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)})
12 inopab 5839 . . 3 ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))}
13 anandi 676 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)))
14 ancom 460 . . . . . . 7 ((𝑏 = (𝐹𝑎) ∧ 𝑏𝐵) ↔ (𝑏𝐵𝑏 = (𝐹𝑎)))
1514anbi2i 623 . . . . . 6 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
16 anass 468 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
17 eqcom 2744 . . . . . . 7 (𝑏 = (𝐹𝑎) ↔ (𝐹𝑎) = 𝑏)
1817anbi2i 623 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
1915, 16, 183bitr2i 299 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2013, 19bitr3i 277 . . . 4 (((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2120opabbii 5210 . . 3 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
2211, 12, 213eqtri 2769 . 2 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
238, 22eqtrdi 2793 1 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951  {copab 5205  cmpt 5225   × cxp 5683   Fn wfn 6556  wf 6557  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569
This theorem is referenced by:  fgraphxp  43216
  Copyright terms: Public domain W3C validator