Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphopab Structured version   Visualization version   GIF version

Theorem fgraphopab 43199
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphopab (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Distinct variable groups:   𝐹,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏

Proof of Theorem fgraphopab
StepHypRef Expression
1 fssxp 6718 . . . 4 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 dfss2 3935 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) ↔ (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
31, 2sylib 218 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
4 ffn 6691 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 dffn5 6922 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
64, 5sylib 218 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
76ineq1d 4185 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
83, 7eqtr3d 2767 . 2 (𝐹:𝐴𝐵𝐹 = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
9 df-mpt 5192 . . . 4 (𝑎𝐴 ↦ (𝐹𝑎)) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))}
10 df-xp 5647 . . . 4 (𝐴 × 𝐵) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}
119, 10ineq12i 4184 . . 3 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)})
12 inopab 5795 . . 3 ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))}
13 anandi 676 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)))
14 ancom 460 . . . . . . 7 ((𝑏 = (𝐹𝑎) ∧ 𝑏𝐵) ↔ (𝑏𝐵𝑏 = (𝐹𝑎)))
1514anbi2i 623 . . . . . 6 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
16 anass 468 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
17 eqcom 2737 . . . . . . 7 (𝑏 = (𝐹𝑎) ↔ (𝐹𝑎) = 𝑏)
1817anbi2i 623 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
1915, 16, 183bitr2i 299 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2013, 19bitr3i 277 . . . 4 (((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2120opabbii 5177 . . 3 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
2211, 12, 213eqtri 2757 . 2 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
238, 22eqtrdi 2781 1 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  {copab 5172  cmpt 5191   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  fgraphxp  43200
  Copyright terms: Public domain W3C validator