Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphopab Structured version   Visualization version   GIF version

Theorem fgraphopab 43227
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphopab (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Distinct variable groups:   𝐹,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏

Proof of Theorem fgraphopab
StepHypRef Expression
1 fssxp 6733 . . . 4 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 dfss2 3944 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) ↔ (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
31, 2sylib 218 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = 𝐹)
4 ffn 6706 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 dffn5 6937 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
64, 5sylib 218 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝑎𝐴 ↦ (𝐹𝑎)))
76ineq1d 4194 . . 3 (𝐹:𝐴𝐵 → (𝐹 ∩ (𝐴 × 𝐵)) = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
83, 7eqtr3d 2772 . 2 (𝐹:𝐴𝐵𝐹 = ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)))
9 df-mpt 5202 . . . 4 (𝑎𝐴 ↦ (𝐹𝑎)) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))}
10 df-xp 5660 . . . 4 (𝐴 × 𝐵) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}
119, 10ineq12i 4193 . . 3 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)})
12 inopab 5808 . . 3 ({⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏 = (𝐹𝑎))} ∩ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵)}) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))}
13 anandi 676 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)))
14 ancom 460 . . . . . . 7 ((𝑏 = (𝐹𝑎) ∧ 𝑏𝐵) ↔ (𝑏𝐵𝑏 = (𝐹𝑎)))
1514anbi2i 623 . . . . . 6 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
16 anass 468 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ (𝑎𝐴 ∧ (𝑏𝐵𝑏 = (𝐹𝑎))))
17 eqcom 2742 . . . . . . 7 (𝑏 = (𝐹𝑎) ↔ (𝐹𝑎) = 𝑏)
1817anbi2i 623 . . . . . 6 (((𝑎𝐴𝑏𝐵) ∧ 𝑏 = (𝐹𝑎)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
1915, 16, 183bitr2i 299 . . . . 5 ((𝑎𝐴 ∧ (𝑏 = (𝐹𝑎) ∧ 𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2013, 19bitr3i 277 . . . 4 (((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
2120opabbii 5186 . . 3 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏 = (𝐹𝑎)) ∧ (𝑎𝐴𝑏𝐵))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
2211, 12, 213eqtri 2762 . 2 ((𝑎𝐴 ↦ (𝐹𝑎)) ∩ (𝐴 × 𝐵)) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
238, 22eqtrdi 2786 1 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926  {copab 5181  cmpt 5201   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539
This theorem is referenced by:  fgraphxp  43228
  Copyright terms: Public domain W3C validator