Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval1 | Structured version Visualization version GIF version |
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
Ref | Expression |
---|---|
ddeval1 | ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10946 | . . . . 5 ⊢ ℝ ∈ V | |
2 | 1 | ssex 5248 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
3 | elpwg 4541 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
5 | 2, 4 | mpancom 684 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
6 | eleq2 2828 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
7 | 6 | ifbid 4487 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
8 | df-dde 32180 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
9 | 1ex 10955 | . . . . 5 ⊢ 1 ∈ V | |
10 | c0ex 10953 | . . . . 5 ⊢ 0 ∈ V | |
11 | 9, 10 | ifex 4514 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
12 | 7, 8, 11 | fvmpt 6869 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
14 | iftrue 4470 | . 2 ⊢ (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1) | |
15 | 13, 14 | sylan9eq 2799 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ifcif 4464 𝒫 cpw 4538 ‘cfv 6430 ℝcr 10854 0cc0 10855 1c1 10856 δcdde 32179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-i2m1 10923 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-dde 32180 |
This theorem is referenced by: ddemeas 32183 |
Copyright terms: Public domain | W3C validator |