Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddeval1 Structured version   Visualization version   GIF version

Theorem ddeval1 34198
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddeval1 ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1)

Proof of Theorem ddeval1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reex 11275 . . . . 5 ℝ ∈ V
21ssex 5339 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
3 elpwg 4625 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ))
43biimpar 477 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ)
52, 4mpancom 687 . . 3 (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ)
6 eleq2 2833 . . . . 5 (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴))
76ifbid 4571 . . . 4 (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0))
8 df-dde 34197 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
9 1ex 11286 . . . . 5 1 ∈ V
10 c0ex 11284 . . . . 5 0 ∈ V
119, 10ifex 4598 . . . 4 if(0 ∈ 𝐴, 1, 0) ∈ V
127, 8, 11fvmpt 7029 . . 3 (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
135, 12syl 17 . 2 (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
14 iftrue 4554 . 2 (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1)
1513, 14sylan9eq 2800 1 ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  ifcif 4548  𝒫 cpw 4622  cfv 6573  cr 11183  0cc0 11184  1c1 11185  δcdde 34196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-dde 34197
This theorem is referenced by:  ddemeas  34200
  Copyright terms: Public domain W3C validator