| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval1 | Structured version Visualization version GIF version | ||
| Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| ddeval1 | ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11094 | . . . . 5 ⊢ ℝ ∈ V | |
| 2 | 1 | ssex 5259 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 3 | elpwg 4553 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
| 4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
| 5 | 2, 4 | mpancom 688 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
| 6 | eleq2 2820 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
| 7 | 6 | ifbid 4499 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
| 8 | df-dde 34241 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
| 9 | 1ex 11105 | . . . . 5 ⊢ 1 ∈ V | |
| 10 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 11 | 9, 10 | ifex 4526 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6929 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 14 | iftrue 4481 | . 2 ⊢ (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1) | |
| 15 | 13, 14 | sylan9eq 2786 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ifcif 4475 𝒫 cpw 4550 ‘cfv 6481 ℝcr 11002 0cc0 11003 1c1 11004 δcdde 34240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-dde 34241 |
| This theorem is referenced by: ddemeas 34244 |
| Copyright terms: Public domain | W3C validator |