Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddeval1 Structured version   Visualization version   GIF version

Theorem ddeval1 33843
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddeval1 ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1)

Proof of Theorem ddeval1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reex 11223 . . . . 5 ℝ ∈ V
21ssex 5315 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
3 elpwg 4601 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ))
43biimpar 477 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ)
52, 4mpancom 687 . . 3 (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ)
6 eleq2 2817 . . . . 5 (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴))
76ifbid 4547 . . . 4 (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0))
8 df-dde 33842 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
9 1ex 11234 . . . . 5 1 ∈ V
10 c0ex 11232 . . . . 5 0 ∈ V
119, 10ifex 4574 . . . 4 if(0 ∈ 𝐴, 1, 0) ∈ V
127, 8, 11fvmpt 6999 . . 3 (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
135, 12syl 17 . 2 (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
14 iftrue 4530 . 2 (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1)
1513, 14sylan9eq 2787 1 ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  wss 3944  ifcif 4524  𝒫 cpw 4598  cfv 6542  cr 11131  0cc0 11132  1c1 11133  δcdde 33841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-mulcl 11194  ax-i2m1 11200
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-dde 33842
This theorem is referenced by:  ddemeas  33845
  Copyright terms: Public domain W3C validator