Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval1 | Structured version Visualization version GIF version |
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
Ref | Expression |
---|---|
ddeval1 | ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10893 | . . . . 5 ⊢ ℝ ∈ V | |
2 | 1 | ssex 5240 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
3 | elpwg 4533 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
5 | 2, 4 | mpancom 684 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
6 | eleq2 2827 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
7 | 6 | ifbid 4479 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
8 | df-dde 32101 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
9 | 1ex 10902 | . . . . 5 ⊢ 1 ∈ V | |
10 | c0ex 10900 | . . . . 5 ⊢ 0 ∈ V | |
11 | 9, 10 | ifex 4506 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
12 | 7, 8, 11 | fvmpt 6857 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
14 | iftrue 4462 | . 2 ⊢ (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1) | |
15 | 13, 14 | sylan9eq 2799 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 ‘cfv 6418 ℝcr 10801 0cc0 10802 1c1 10803 δcdde 32100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-dde 32101 |
This theorem is referenced by: ddemeas 32104 |
Copyright terms: Public domain | W3C validator |