| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval1 | Structured version Visualization version GIF version | ||
| Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| ddeval1 | ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11229 | . . . . 5 ⊢ ℝ ∈ V | |
| 2 | 1 | ssex 5303 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 3 | elpwg 4585 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
| 4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
| 5 | 2, 4 | mpancom 688 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
| 6 | eleq2 2822 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
| 7 | 6 | ifbid 4531 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
| 8 | df-dde 34175 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
| 9 | 1ex 11240 | . . . . 5 ⊢ 1 ∈ V | |
| 10 | c0ex 11238 | . . . . 5 ⊢ 0 ∈ V | |
| 11 | 9, 10 | ifex 4558 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6997 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 14 | iftrue 4513 | . 2 ⊢ (0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 1) | |
| 15 | 13, 14 | sylan9eq 2789 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 ifcif 4507 𝒫 cpw 4582 ‘cfv 6542 ℝcr 11137 0cc0 11138 1c1 11139 δcdde 34174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-i2m1 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-dde 34175 |
| This theorem is referenced by: ddemeas 34178 |
| Copyright terms: Public domain | W3C validator |