Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddeval0 Structured version   Visualization version   GIF version

Theorem ddeval0 34243
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddeval0 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)

Proof of Theorem ddeval0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reex 11094 . . . . 5 ℝ ∈ V
21ssex 5259 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
3 elpwg 4553 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ))
43biimpar 477 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ)
52, 4mpancom 688 . . 3 (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ)
6 eleq2 2820 . . . . 5 (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴))
76ifbid 4499 . . . 4 (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0))
8 df-dde 34241 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
9 1ex 11105 . . . . 5 1 ∈ V
10 c0ex 11103 . . . . 5 0 ∈ V
119, 10ifex 4526 . . . 4 if(0 ∈ 𝐴, 1, 0) ∈ V
127, 8, 11fvmpt 6929 . . 3 (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
135, 12syl 17 . 2 (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
14 iffalse 4484 . 2 (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0)
1513, 14sylan9eq 2786 1 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  ifcif 4475  𝒫 cpw 4550  cfv 6481  cr 11002  0cc0 11003  1c1 11004  δcdde 34240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-i2m1 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-dde 34241
This theorem is referenced by:  ddemeas  34244
  Copyright terms: Public domain W3C validator