| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval0 | Structured version Visualization version GIF version | ||
| Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| ddeval0 | ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11165 | . . . . 5 ⊢ ℝ ∈ V | |
| 2 | 1 | ssex 5278 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 3 | elpwg 4568 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
| 4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
| 5 | 2, 4 | mpancom 688 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
| 6 | eleq2 2818 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
| 7 | 6 | ifbid 4514 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
| 8 | df-dde 34229 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
| 9 | 1ex 11176 | . . . . 5 ⊢ 1 ∈ V | |
| 10 | c0ex 11174 | . . . . 5 ⊢ 0 ∈ V | |
| 11 | 9, 10 | ifex 4541 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6970 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 14 | iffalse 4499 | . 2 ⊢ (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0) | |
| 15 | 13, 14 | sylan9eq 2785 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ifcif 4490 𝒫 cpw 4565 ‘cfv 6513 ℝcr 11073 0cc0 11074 1c1 11075 δcdde 34228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-mulcl 11136 ax-i2m1 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-dde 34229 |
| This theorem is referenced by: ddemeas 34232 |
| Copyright terms: Public domain | W3C validator |