Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval0 | Structured version Visualization version GIF version |
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
Ref | Expression |
---|---|
ddeval0 | ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10962 | . . . . 5 ⊢ ℝ ∈ V | |
2 | 1 | ssex 5245 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
3 | elpwg 4536 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
4 | 3 | biimpar 478 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
5 | 2, 4 | mpancom 685 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
6 | eleq2 2827 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
7 | 6 | ifbid 4482 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
8 | df-dde 32201 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
9 | 1ex 10971 | . . . . 5 ⊢ 1 ∈ V | |
10 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
11 | 9, 10 | ifex 4509 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
12 | 7, 8, 11 | fvmpt 6875 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
14 | iffalse 4468 | . 2 ⊢ (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0) | |
15 | 13, 14 | sylan9eq 2798 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ifcif 4459 𝒫 cpw 4533 ‘cfv 6433 ℝcr 10870 0cc0 10871 1c1 10872 δcdde 32200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-dde 32201 |
This theorem is referenced by: ddemeas 32204 |
Copyright terms: Public domain | W3C validator |