| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ddeval0 | Structured version Visualization version GIF version | ||
| Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| ddeval0 | ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11104 | . . . . 5 ⊢ ℝ ∈ V | |
| 2 | 1 | ssex 5261 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 3 | elpwg 4552 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)) | |
| 4 | 3 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ) |
| 5 | 2, 4 | mpancom 688 | . . 3 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ) |
| 6 | eleq2 2822 | . . . . 5 ⊢ (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴)) | |
| 7 | 6 | ifbid 4498 | . . . 4 ⊢ (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0)) |
| 8 | df-dde 34267 | . . . 4 ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | |
| 9 | 1ex 11115 | . . . . 5 ⊢ 1 ∈ V | |
| 10 | c0ex 11113 | . . . . 5 ⊢ 0 ∈ V | |
| 11 | 9, 10 | ifex 4525 | . . . 4 ⊢ if(0 ∈ 𝐴, 1, 0) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6935 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 13 | 5, 12 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0)) |
| 14 | iffalse 4483 | . 2 ⊢ (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0) | |
| 15 | 13, 14 | sylan9eq 2788 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ifcif 4474 𝒫 cpw 4549 ‘cfv 6486 ℝcr 11012 0cc0 11013 1c1 11014 δcdde 34266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-dde 34267 |
| This theorem is referenced by: ddemeas 34270 |
| Copyright terms: Public domain | W3C validator |