Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddeval0 Structured version   Visualization version   GIF version

Theorem ddeval0 32203
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddeval0 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)

Proof of Theorem ddeval0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reex 10962 . . . . 5 ℝ ∈ V
21ssex 5245 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
3 elpwg 4536 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ))
43biimpar 478 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ)
52, 4mpancom 685 . . 3 (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ)
6 eleq2 2827 . . . . 5 (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴))
76ifbid 4482 . . . 4 (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0))
8 df-dde 32201 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
9 1ex 10971 . . . . 5 1 ∈ V
10 c0ex 10969 . . . . 5 0 ∈ V
119, 10ifex 4509 . . . 4 if(0 ∈ 𝐴, 1, 0) ∈ V
127, 8, 11fvmpt 6875 . . 3 (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
135, 12syl 17 . 2 (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
14 iffalse 4468 . 2 (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0)
1513, 14sylan9eq 2798 1 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459  𝒫 cpw 4533  cfv 6433  cr 10870  0cc0 10871  1c1 10872  δcdde 32200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-dde 32201
This theorem is referenced by:  ddemeas  32204
  Copyright terms: Public domain W3C validator