Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fences2 Structured version   Visualization version   GIF version

Theorem fences2 38780
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet3 38771) generate a partition of the members, it alo means that (𝑅 ErALTV 𝐴 → ElDisj 𝐴) and that (𝑅 ErALTV 𝐴 → ¬ ∅ ∈ 𝐴). (Contributed by Peter Mazsa, 15-Oct-2021.)
Assertion
Ref Expression
fences2 (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem fences2
StepHypRef Expression
1 fences 38779 . 2 (𝑅 ErALTV 𝐴 → MembPart 𝐴)
2 dfmembpart2 38705 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
31, 2sylib 218 1 (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107  c0 4313   ErALTV werALTV 38142   ElDisj weldisj 38152   MembPart wmembpart 38157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-eprel 5564  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8728  df-qs 8732  df-coss 38346  df-coels 38347  df-refrel 38447  df-cnvrefrel 38462  df-symrel 38479  df-trrel 38509  df-eqvrel 38520  df-coeleqvrel 38522  df-dmqs 38574  df-erALTV 38599  df-comember 38601  df-funALTV 38617  df-disjALTV 38640  df-eldisj 38642  df-part 38701  df-membpart 38703
This theorem is referenced by:  mainer2  38781
  Copyright terms: Public domain W3C validator