![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences2 | Structured version Visualization version GIF version |
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet3 38832) generate a partition of the members, it alo means that (𝑅 ErALTV 𝐴 → ElDisj 𝐴) and that (𝑅 ErALTV 𝐴 → ¬ ∅ ∈ 𝐴). (Contributed by Peter Mazsa, 15-Oct-2021.) |
Ref | Expression |
---|---|
fences2 | ⊢ (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fences 38840 | . 2 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) | |
2 | dfmembpart2 38766 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∅c0 4342 ErALTV werALTV 38202 ElDisj weldisj 38212 MembPart wmembpart 38217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-eprel 5593 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ec 8755 df-qs 8759 df-coss 38407 df-coels 38408 df-refrel 38508 df-cnvrefrel 38523 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 df-coeleqvrel 38583 df-dmqs 38635 df-erALTV 38660 df-comember 38662 df-funALTV 38678 df-disjALTV 38701 df-eldisj 38703 df-part 38762 df-membpart 38764 |
This theorem is referenced by: mainer2 38842 |
Copyright terms: Public domain | W3C validator |