| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fences2 | Structured version Visualization version GIF version | ||
| Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet3 38821) generate a partition of the members, it alo means that (𝑅 ErALTV 𝐴 → ElDisj 𝐴) and that (𝑅 ErALTV 𝐴 → ¬ ∅ ∈ 𝐴). (Contributed by Peter Mazsa, 15-Oct-2021.) |
| Ref | Expression |
|---|---|
| fences2 | ⊢ (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fences 38829 | . 2 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) | |
| 2 | dfmembpart2 38755 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∅c0 4304 ErALTV werALTV 38192 ElDisj weldisj 38202 MembPart wmembpart 38207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-eprel 5546 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 df-qs 8688 df-coss 38396 df-coels 38397 df-refrel 38497 df-cnvrefrel 38512 df-symrel 38529 df-trrel 38559 df-eqvrel 38570 df-coeleqvrel 38572 df-dmqs 38624 df-erALTV 38649 df-comember 38651 df-funALTV 38667 df-disjALTV 38690 df-eldisj 38692 df-part 38751 df-membpart 38753 |
| This theorem is referenced by: mainer2 38831 |
| Copyright terms: Public domain | W3C validator |