Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpet Structured version   Visualization version   GIF version

Theorem cpet 38946
Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 38945. Cf. mpet 38947, mpet2 38948 and mpet3 38944 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 38959 and pet2 38958 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
cpet ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem cpet
StepHypRef Expression
1 dfmembpart2 38878 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
2 cpet2 38945 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
31, 2bitri 275 1 ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  c0 4284   cuni 4860   / cqs 8630  ccoels 38233   EqvRel weqvrel 38249   ElDisj weldisj 38268   MembPart wmembpart 38273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637  df-coss 38523  df-coels 38524  df-refrel 38614  df-cnvrefrel 38629  df-symrel 38646  df-trrel 38680  df-eqvrel 38691  df-dmqs 38745  df-funALTV 38790  df-disjALTV 38813  df-eldisj 38815  df-part 38874  df-membpart 38876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator