![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpet | Structured version Visualization version GIF version |
Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 38785. Cf. mpet 38787, mpet2 38788 and mpet3 38784 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 38799 and pet2 38798 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
cpet | ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmembpart2 38718 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
2 | cpet2 38785 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ∪ cuni 4931 / cqs 8756 ∼ ccoels 38128 EqvRel weqvrel 38144 ElDisj weldisj 38163 MembPart wmembpart 38168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-eprel 5599 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ec 8759 df-qs 8763 df-coss 38359 df-coels 38360 df-refrel 38460 df-cnvrefrel 38475 df-symrel 38492 df-trrel 38522 df-eqvrel 38533 df-dmqs 38587 df-funALTV 38630 df-disjALTV 38653 df-eldisj 38655 df-part 38714 df-membpart 38716 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |