Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpet | Structured version Visualization version GIF version |
Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 37055. Cf. mpet 37057, mpet2 37058 and mpet3 37054 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 37069 and pet2 37068 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
cpet | ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmembpart2 36988 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
2 | cpet2 37055 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∅c0 4267 ∪ cuni 4850 / cqs 8545 ∼ ccoels 36390 EqvRel weqvrel 36406 ElDisj weldisj 36425 MembPart wmembpart 36430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-eprel 5513 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8548 df-qs 8552 df-coss 36629 df-coels 36630 df-refrel 36730 df-cnvrefrel 36745 df-symrel 36762 df-trrel 36792 df-eqvrel 36803 df-dmqs 36857 df-funALTV 36900 df-disjALTV 36923 df-eldisj 36925 df-part 36984 df-membpart 36986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |