Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpet Structured version   Visualization version   GIF version

Theorem cpet 38777
Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 38776. Cf. mpet 38778, mpet2 38779 and mpet3 38775 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 38790 and pet2 38789 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
cpet ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem cpet
StepHypRef Expression
1 dfmembpart2 38709 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
2 cpet2 38776 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
31, 2bitri 275 1 ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1539  wcel 2107  c0 4306   cuni 4880   / cqs 8712  ccoels 38121   EqvRel weqvrel 38137   ElDisj weldisj 38156   MembPart wmembpart 38161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-ec 8715  df-qs 8719  df-coss 38350  df-coels 38351  df-refrel 38451  df-cnvrefrel 38466  df-symrel 38483  df-trrel 38513  df-eqvrel 38524  df-dmqs 38578  df-funALTV 38621  df-disjALTV 38644  df-eldisj 38646  df-part 38705  df-membpart 38707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator