| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpet | Structured version Visualization version GIF version | ||
| Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 38945. Cf. mpet 38947, mpet2 38948 and mpet3 38944 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 38959 and pet2 38958 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| cpet | ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmembpart2 38878 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 2 | cpet2 38945 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4284 ∪ cuni 4860 / cqs 8630 ∼ ccoels 38233 EqvRel weqvrel 38249 ElDisj weldisj 38268 MembPart wmembpart 38273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 df-coss 38523 df-coels 38524 df-refrel 38614 df-cnvrefrel 38629 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 df-dmqs 38745 df-funALTV 38790 df-disjALTV 38813 df-eldisj 38815 df-part 38874 df-membpart 38876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |