Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpet Structured version   Visualization version   GIF version

Theorem cpet 37052
Description: The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 37051. Cf. mpet 37053, mpet2 37054 and mpet3 37050 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 37065 and pet2 37064 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
cpet ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem cpet
StepHypRef Expression
1 dfmembpart2 36984 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
2 cpet2 37051 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
31, 2bitri 275 1 ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397   = wceq 1539  wcel 2104  c0 4262   cuni 4844   / cqs 8528  ccoels 36382   EqvRel weqvrel 36398   ElDisj weldisj 36417   MembPart wmembpart 36422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36625  df-coels 36626  df-refrel 36726  df-cnvrefrel 36741  df-symrel 36758  df-trrel 36788  df-eqvrel 36799  df-dmqs 36853  df-funALTV 36896  df-disjALTV 36919  df-eldisj 36921  df-part 36980  df-membpart 36982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator