| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38819. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38817, mpet3 38813, and with the conventional cpet 38815 and cpet2 38814, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38827 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet | ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet3 38813 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 2 | dfmembpart2 38747 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 3 | dfcomember3 38651 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4286 ∪ cuni 4861 / cqs 8631 ∼ ccoels 38155 CoElEqvRel wcoeleqvrel 38173 CoMembEr wcomember 38182 ElDisj weldisj 38190 MembPart wmembpart 38195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coss 38387 df-coels 38388 df-refrel 38488 df-cnvrefrel 38503 df-symrel 38520 df-trrel 38550 df-eqvrel 38561 df-coeleqvrel 38563 df-dmqs 38615 df-erALTV 38641 df-comember 38643 df-funALTV 38659 df-disjALTV 38682 df-eldisj 38684 df-part 38743 df-membpart 38745 |
| This theorem is referenced by: mpet2 38817 mainpart 38820 fences 38821 |
| Copyright terms: Public domain | W3C validator |