Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet Structured version   Visualization version   GIF version

Theorem mpet 38305
Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38308. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38306, mpet3 38302, and with the conventional cpet 38304 and cpet2 38303, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38316 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet ( MembPart 𝐴 ↔ CoMembEr 𝐴)

Proof of Theorem mpet
StepHypRef Expression
1 mpet3 38302 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
2 dfmembpart2 38236 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
3 dfcomember3 38140 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
41, 2, 33bitr4i 303 1 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1534  wcel 2099  c0 4318   cuni 4903   / cqs 8717  ccoels 37643   CoElEqvRel wcoeleqvrel 37661   CoMembEr wcomember 37670   ElDisj weldisj 37678   MembPart wmembpart 37683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-eprel 5576  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8720  df-qs 8724  df-coss 37877  df-coels 37878  df-refrel 37978  df-cnvrefrel 37993  df-symrel 38010  df-trrel 38040  df-eqvrel 38051  df-coeleqvrel 38053  df-dmqs 38105  df-erALTV 38130  df-comember 38132  df-funALTV 38148  df-disjALTV 38171  df-eldisj 38173  df-part 38232  df-membpart 38234
This theorem is referenced by:  mpet2  38306  mainpart  38309  fences  38310
  Copyright terms: Public domain W3C validator