Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 37056. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 37054, mpet3 37050, and with the conventional cpet 37052 and cpet2 37051, this is what we used to think of as the partition equivalence theorem (but cf. pet2 37064 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpet | ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet3 37050 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
2 | dfmembpart2 36984 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
3 | dfcomember3 36888 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∅c0 4262 ∪ cuni 4844 / cqs 8528 ∼ ccoels 36382 CoElEqvRel wcoeleqvrel 36400 CoMembEr wcomember 36409 ElDisj weldisj 36417 MembPart wmembpart 36422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36625 df-coels 36626 df-refrel 36726 df-cnvrefrel 36741 df-symrel 36758 df-trrel 36788 df-eqvrel 36799 df-coeleqvrel 36801 df-dmqs 36853 df-erALTV 36878 df-comember 36880 df-funALTV 36896 df-disjALTV 36919 df-eldisj 36921 df-part 36980 df-membpart 36982 |
This theorem is referenced by: mpet2 37054 mainpart 37057 fences 37058 |
Copyright terms: Public domain | W3C validator |