Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet Structured version   Visualization version   GIF version

Theorem mpet 38876
Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38879. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38877, mpet3 38873, and with the conventional cpet 38875 and cpet2 38874, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38887 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet ( MembPart 𝐴 ↔ CoMembEr 𝐴)

Proof of Theorem mpet
StepHypRef Expression
1 mpet3 38873 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
2 dfmembpart2 38807 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
3 dfcomember3 38711 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
41, 2, 33bitr4i 303 1 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  c0 4283   cuni 4859   / cqs 8621  ccoels 38215   CoElEqvRel wcoeleqvrel 38233   CoMembEr wcomember 38242   ElDisj weldisj 38250   MembPart wmembpart 38255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-qs 8628  df-coss 38447  df-coels 38448  df-refrel 38548  df-cnvrefrel 38563  df-symrel 38580  df-trrel 38610  df-eqvrel 38621  df-coeleqvrel 38623  df-dmqs 38675  df-erALTV 38701  df-comember 38703  df-funALTV 38719  df-disjALTV 38742  df-eldisj 38744  df-part 38803  df-membpart 38805
This theorem is referenced by:  mpet2  38877  mainpart  38880  fences  38881
  Copyright terms: Public domain W3C validator