| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38841. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38839, mpet3 38835, and with the conventional cpet 38837 and cpet2 38836, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38849 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet | ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet3 38835 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 2 | dfmembpart2 38769 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 3 | dfcomember3 38673 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ∪ cuni 4874 / cqs 8673 ∼ ccoels 38177 CoElEqvRel wcoeleqvrel 38195 CoMembEr wcomember 38204 ElDisj weldisj 38212 MembPart wmembpart 38217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 df-coss 38409 df-coels 38410 df-refrel 38510 df-cnvrefrel 38525 df-symrel 38542 df-trrel 38572 df-eqvrel 38583 df-coeleqvrel 38585 df-dmqs 38637 df-erALTV 38663 df-comember 38665 df-funALTV 38681 df-disjALTV 38704 df-eldisj 38706 df-part 38765 df-membpart 38767 |
| This theorem is referenced by: mpet2 38839 mainpart 38842 fences 38843 |
| Copyright terms: Public domain | W3C validator |