Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet Structured version   Visualization version   GIF version

Theorem mpet 38838
Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38841. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38839, mpet3 38835, and with the conventional cpet 38837 and cpet2 38836, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38849 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet ( MembPart 𝐴 ↔ CoMembEr 𝐴)

Proof of Theorem mpet
StepHypRef Expression
1 mpet3 38835 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
2 dfmembpart2 38769 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
3 dfcomember3 38673 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
41, 2, 33bitr4i 303 1 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4299   cuni 4874   / cqs 8673  ccoels 38177   CoElEqvRel wcoeleqvrel 38195   CoMembEr wcomember 38204   ElDisj weldisj 38212   MembPart wmembpart 38217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-coss 38409  df-coels 38410  df-refrel 38510  df-cnvrefrel 38525  df-symrel 38542  df-trrel 38572  df-eqvrel 38583  df-coeleqvrel 38585  df-dmqs 38637  df-erALTV 38663  df-comember 38665  df-funALTV 38681  df-disjALTV 38704  df-eldisj 38706  df-part 38765  df-membpart 38767
This theorem is referenced by:  mpet2  38839  mainpart  38842  fences  38843
  Copyright terms: Public domain W3C validator