| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38806. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38804, mpet3 38800, and with the conventional cpet 38802 and cpet2 38801, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38814 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet | ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet3 38800 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 2 | dfmembpart2 38734 | . 2 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 3 | dfcomember3 38638 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ∪ cuni 4883 / cqs 8716 ∼ ccoels 38146 CoElEqvRel wcoeleqvrel 38164 CoMembEr wcomember 38173 ElDisj weldisj 38181 MembPart wmembpart 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 df-qs 8723 df-coss 38375 df-coels 38376 df-refrel 38476 df-cnvrefrel 38491 df-symrel 38508 df-trrel 38538 df-eqvrel 38549 df-coeleqvrel 38551 df-dmqs 38603 df-erALTV 38628 df-comember 38630 df-funALTV 38646 df-disjALTV 38669 df-eldisj 38671 df-part 38730 df-membpart 38732 |
| This theorem is referenced by: mpet2 38804 mainpart 38807 fences 38808 |
| Copyright terms: Public domain | W3C validator |