Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet Structured version   Visualization version   GIF version

Theorem mpet 38840
Description: Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38843. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38841, mpet3 38837, and with the conventional cpet 38839 and cpet2 38838, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38851 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpet ( MembPart 𝐴 ↔ CoMembEr 𝐴)

Proof of Theorem mpet
StepHypRef Expression
1 mpet3 38837 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
2 dfmembpart2 38771 . 2 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
3 dfcomember3 38675 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
41, 2, 33bitr4i 303 1 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2108  c0 4333   cuni 4907   / cqs 8744  ccoels 38183   CoElEqvRel wcoeleqvrel 38201   CoMembEr wcomember 38210   ElDisj weldisj 38218   MembPart wmembpart 38223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-eprel 5584  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751  df-coss 38412  df-coels 38413  df-refrel 38513  df-cnvrefrel 38528  df-symrel 38545  df-trrel 38575  df-eqvrel 38586  df-coeleqvrel 38588  df-dmqs 38640  df-erALTV 38665  df-comember 38667  df-funALTV 38683  df-disjALTV 38706  df-eldisj 38708  df-part 38767  df-membpart 38769
This theorem is referenced by:  mpet2  38841  mainpart  38844  fences  38845
  Copyright terms: Public domain W3C validator