![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab4 | Structured version Visualization version GIF version |
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab4.1 | ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dfoprab4 | ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5698 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | 1 | sseli 3978 | . . . . 5 ⊢ (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 ∈ (V × V)) |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) → 𝑤 ∈ (V × V)) |
4 | 3 | pm4.71ri 559 | . . 3 ⊢ ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))) |
5 | 4 | opabbii 5219 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} |
6 | eleq1 2817 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))) | |
7 | opelxp 5718 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
8 | 6, 7 | bitrdi 286 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | dfoprab4.1 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | anbi12d 630 | . . 3 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓))) |
11 | 10 | dfoprab3 8064 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
12 | 5, 11 | eqtri 2756 | 1 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ⟨cop 4638 {copab 5214 × cxp 5680 {coprab 7427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fv 6561 df-oprab 7430 df-1st 7999 df-2nd 8000 |
This theorem is referenced by: dfoprab4f 8066 dfxp3 8071 xrninxp 37896 |
Copyright terms: Public domain | W3C validator |