MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab4 Structured version   Visualization version   GIF version

Theorem dfoprab4 7749
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfoprab4.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab4 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝜑,𝑥,𝑦   𝜓,𝑤   𝑧,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem dfoprab4
StepHypRef Expression
1 xpss 5570 . . . . . 6 (𝐴 × 𝐵) ⊆ (V × V)
21sseli 3967 . . . . 5 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 ∈ (V × V))
32adantr 481 . . . 4 ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) → 𝑤 ∈ (V × V))
43pm4.71ri 561 . . 3 ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)))
54opabbii 5130 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))}
6 eleq1 2905 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
7 opelxp 5590 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
86, 7syl6bb 288 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
9 dfoprab4.1 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
108, 9anbi12d 630 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)))
1110dfoprab3 7748 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
125, 11eqtri 2849 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  Vcvv 3500  cop 4570  {copab 5125   × cxp 5552  {coprab 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fv 6362  df-oprab 7154  df-1st 7685  df-2nd 7686
This theorem is referenced by:  dfoprab4f  7750  dfxp3  7755  xrninxp  35526
  Copyright terms: Public domain W3C validator