![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab4 | Structured version Visualization version GIF version |
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab4.1 | ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dfoprab4 | ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5694 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | 1 | sseli 3972 | . . . . 5 ⊢ (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 ∈ (V × V)) |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) → 𝑤 ∈ (V × V)) |
4 | 3 | pm4.71ri 559 | . . 3 ⊢ ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))) |
5 | 4 | opabbii 5216 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} |
6 | eleq1 2813 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
7 | opelxp 5714 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
8 | 6, 7 | bitrdi 286 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | dfoprab4.1 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | anbi12d 630 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓))) |
11 | 10 | dfoprab3 8059 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
12 | 5, 11 | eqtri 2753 | 1 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 〈cop 4636 {copab 5211 × cxp 5676 {coprab 7420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fv 6557 df-oprab 7423 df-1st 7994 df-2nd 7995 |
This theorem is referenced by: dfoprab4f 8061 dfxp3 8066 xrninxp 37994 |
Copyright terms: Public domain | W3C validator |