| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvoprab | Structured version Visualization version GIF version | ||
| Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| cnvoprab.1 | ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) |
| cnvoprab.2 | ⊢ (𝜓 → 𝑎 ∈ (V × V)) |
| Ref | Expression |
|---|---|
| cnvoprab | ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvoprab.1 | . . . 4 ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | dfoprab3 8053 | . . 3 ⊢ {〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 3 | 2 | cnveqi 5854 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 4 | cnvopab 6126 | . . 3 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
| 5 | inopab 5808 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
| 6 | cnvoprab.2 | . . . . 5 ⊢ (𝜓 → 𝑎 ∈ (V × V)) | |
| 7 | 6 | ssopab2i 5525 | . . . 4 ⊢ {〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} |
| 8 | sseqin2 4198 | . . . 4 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ↔ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓}) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| 10 | 4, 5, 9 | 3eqtr2i 2764 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| 11 | 3, 10 | eqtr3i 2760 | 1 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 〈cop 4607 {copab 5181 × cxp 5652 ◡ccnv 5653 {coprab 7406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-oprab 7409 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: f1od2 32698 dfxrn2 38394 |
| Copyright terms: Public domain | W3C validator |