MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvoprab Structured version   Visualization version   GIF version

Theorem cnvoprab 8050
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.)
Hypotheses
Ref Expression
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑎)

Proof of Theorem cnvoprab
StepHypRef Expression
1 cnvoprab.1 . . . 4 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
21dfoprab3 8044 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
32cnveqi 5874 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 cnvopab 6138 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
5 inopab 5829 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
6 cnvoprab.2 . . . . 5 (𝜓𝑎 ∈ (V × V))
76ssopab2i 5550 . . . 4 {⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)}
8 sseqin2 4215 . . . 4 ({⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ↔ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓})
97, 8mpbi 229 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
104, 5, 93eqtr2i 2765 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
113, 10eqtr3i 2761 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  wss 3948  cop 4634  {copab 5210   × cxp 5674  ccnv 5675  {coprab 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-oprab 7416  df-1st 7979  df-2nd 7980
This theorem is referenced by:  f1od2  32381  dfxrn2  37713
  Copyright terms: Public domain W3C validator