| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvoprab | Structured version Visualization version GIF version | ||
| Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| cnvoprab.1 | ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) |
| cnvoprab.2 | ⊢ (𝜓 → 𝑎 ∈ (V × V)) |
| Ref | Expression |
|---|---|
| cnvoprab | ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvoprab.1 | . . . 4 ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | dfoprab3 7986 | . . 3 ⊢ {〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 3 | 2 | cnveqi 5813 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 4 | cnvopab 6083 | . . 3 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
| 5 | inopab 5768 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
| 6 | cnvoprab.2 | . . . . 5 ⊢ (𝜓 → 𝑎 ∈ (V × V)) | |
| 7 | 6 | ssopab2i 5488 | . . . 4 ⊢ {〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} |
| 8 | sseqin2 4170 | . . . 4 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ↔ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓}) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| 10 | 4, 5, 9 | 3eqtr2i 2760 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| 11 | 3, 10 | eqtr3i 2756 | 1 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 〈cop 4579 {copab 5151 × cxp 5612 ◡ccnv 5613 {coprab 7347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: f1od2 32702 dfxrn2 38408 |
| Copyright terms: Public domain | W3C validator |