MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvoprab Structured version   Visualization version   GIF version

Theorem cnvoprab 8018
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.)
Hypotheses
Ref Expression
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑎)

Proof of Theorem cnvoprab
StepHypRef Expression
1 cnvoprab.1 . . . 4 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
21dfoprab3 8012 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
32cnveqi 5828 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 cnvopab 6098 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
5 inopab 5783 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
6 cnvoprab.2 . . . . 5 (𝜓𝑎 ∈ (V × V))
76ssopab2i 5505 . . . 4 {⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)}
8 sseqin2 4182 . . . 4 ({⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ↔ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓})
97, 8mpbi 230 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
104, 5, 93eqtr2i 2758 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
113, 10eqtr3i 2754 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  cop 4591  {copab 5164   × cxp 5629  ccnv 5630  {coprab 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-oprab 7373  df-1st 7947  df-2nd 7948
This theorem is referenced by:  f1od2  32695  dfxrn2  38352
  Copyright terms: Public domain W3C validator