Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvoprab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
Ref | Expression |
---|---|
cnvoprab.1 | ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) |
cnvoprab.2 | ⊢ (𝜓 → 𝑎 ∈ (V × V)) |
Ref | Expression |
---|---|
cnvoprab | ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvoprab.1 | . . . 4 ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) | |
2 | 1 | dfoprab3 7926 | . . 3 ⊢ {〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
3 | 2 | cnveqi 5796 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
4 | cnvopab 6057 | . . 3 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
5 | inopab 5751 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
6 | cnvoprab.2 | . . . . 5 ⊢ (𝜓 → 𝑎 ∈ (V × V)) | |
7 | 6 | ssopab2i 5476 | . . . 4 ⊢ {〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} |
8 | sseqin2 4155 | . . . 4 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ↔ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓}) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓} |
10 | 4, 5, 9 | 3eqtr2i 2770 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
11 | 3, 10 | eqtr3i 2766 | 1 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 〈cop 4571 {copab 5143 × cxp 5598 ◡ccnv 5599 {coprab 7308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-oprab 7311 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: f1od2 31105 dfxrn2 36590 |
Copyright terms: Public domain | W3C validator |