![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvoprab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
Ref | Expression |
---|---|
cnvoprab.1 | ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) |
cnvoprab.2 | ⊢ (𝜓 → 𝑎 ∈ (V × V)) |
Ref | Expression |
---|---|
cnvoprab | ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvoprab.1 | . . . 4 ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) | |
2 | 1 | dfoprab3 7373 | . . 3 ⊢ {〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
3 | 2 | cnveqi 5435 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
4 | cnvopab 5674 | . . 3 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
5 | inopab 5391 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
6 | cnvoprab.2 | . . . . 5 ⊢ (𝜓 → 𝑎 ∈ (V × V)) | |
7 | 6 | ssopab2i 5136 | . . . 4 ⊢ {〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} |
8 | sseqin2 3968 | . . . 4 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝜓} ⊆ {〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ↔ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓}) | |
9 | 7, 8 | mpbi 220 | . . 3 ⊢ ({〈𝑧, 𝑎〉 ∣ 𝑎 ∈ (V × V)} ∩ {〈𝑧, 𝑎〉 ∣ 𝜓}) = {〈𝑧, 𝑎〉 ∣ 𝜓} |
10 | 4, 5, 9 | 3eqtr2i 2799 | . 2 ⊢ ◡{〈𝑎, 𝑧〉 ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
11 | 3, 10 | eqtr3i 2795 | 1 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∩ cin 3722 ⊆ wss 3723 〈cop 4322 {copab 4846 × cxp 5247 ◡ccnv 5248 {coprab 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-oprab 6797 df-1st 7315 df-2nd 7316 |
This theorem is referenced by: f1od2 29839 dfxrn2 34480 |
Copyright terms: Public domain | W3C validator |