![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvoprab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
Ref | Expression |
---|---|
cnvoprab.1 | ⊢ (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓 ↔ 𝜑)) |
cnvoprab.2 | ⊢ (𝜓 → 𝑎 ∈ (V × V)) |
Ref | Expression |
---|---|
cnvoprab | ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvoprab.1 | . . . 4 ⊢ (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓 ↔ 𝜑)) | |
2 | 1 | dfoprab3 8036 | . . 3 ⊢ {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
3 | 2 | cnveqi 5872 | . 2 ⊢ ◡{⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = ◡{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
4 | cnvopab 6135 | . . 3 ⊢ ◡{⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
5 | inopab 5827 | . . 3 ⊢ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} | |
6 | cnvoprab.2 | . . . . 5 ⊢ (𝜓 → 𝑎 ∈ (V × V)) | |
7 | 6 | ssopab2i 5549 | . . . 4 ⊢ {⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} |
8 | sseqin2 4214 | . . . 4 ⊢ ({⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ↔ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓}) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓} |
10 | 4, 5, 9 | 3eqtr2i 2766 | . 2 ⊢ ◡{⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ 𝜓} |
11 | 3, 10 | eqtr3i 2762 | 1 ⊢ ◡{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 ⟨cop 4633 {copab 5209 × cxp 5673 ◡ccnv 5674 {coprab 7406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-oprab 7409 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: f1od2 31933 dfxrn2 37234 |
Copyright terms: Public domain | W3C validator |