MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvoprab Structured version   Visualization version   GIF version

Theorem cnvoprab 8042
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.)
Hypotheses
Ref Expression
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑎)

Proof of Theorem cnvoprab
StepHypRef Expression
1 cnvoprab.1 . . . 4 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
21dfoprab3 8036 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
32cnveqi 5841 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 cnvopab 6113 . . 3 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
5 inopab 5795 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)}
6 cnvoprab.2 . . . . 5 (𝜓𝑎 ∈ (V × V))
76ssopab2i 5513 . . . 4 {⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)}
8 sseqin2 4189 . . . 4 ({⟨𝑧, 𝑎⟩ ∣ 𝜓} ⊆ {⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ↔ ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓})
97, 8mpbi 230 . . 3 ({⟨𝑧, 𝑎⟩ ∣ 𝑎 ∈ (V × V)} ∩ {⟨𝑧, 𝑎⟩ ∣ 𝜓}) = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
104, 5, 93eqtr2i 2759 . 2 {⟨𝑎, 𝑧⟩ ∣ (𝑎 ∈ (V × V) ∧ 𝜓)} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
113, 10eqtr3i 2755 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  cop 4598  {copab 5172   × cxp 5639  ccnv 5640  {coprab 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-oprab 7394  df-1st 7971  df-2nd 7972
This theorem is referenced by:  f1od2  32651  dfxrn2  38365
  Copyright terms: Public domain W3C validator