MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Visualization version   GIF version

Theorem dyadmbl 25508
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbl (𝜑 ([,] “ 𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbl
Dummy variables 𝑓 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2 dyadmbl.2 . . 3 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
3 dyadmbl.3 . . 3 (𝜑𝐴 ⊆ ran 𝐹)
41, 2, 3dyadmbllem 25507 . 2 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
5 isfinite 9612 . . . 4 (𝐺 ∈ Fin ↔ 𝐺 ≺ ω)
6 iccf 13416 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 ffun 6694 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
8 funiunfv 7225 . . . . . 6 (Fun [,] → 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺))
96, 7, 8mp2b 10 . . . . 5 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺)
10 simpr 484 . . . . . 6 ((𝜑𝐺 ∈ Fin) → 𝐺 ∈ Fin)
112ssrab3 4048 . . . . . . . . . . . . . . 15 𝐺𝐴
1211, 3sstrid 3961 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ ran 𝐹)
131dyadf 25499 . . . . . . . . . . . . . . . 16 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
14 frn 6698 . . . . . . . . . . . . . . . 16 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
16 inss2 4204 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1715, 16sstri 3959 . . . . . . . . . . . . . 14 ran 𝐹 ⊆ (ℝ × ℝ)
1812, 17sstrdi 3962 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (ℝ × ℝ))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ Fin) → 𝐺 ⊆ (ℝ × ℝ))
2019sselda 3949 . . . . . . . . . . 11 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 ∈ (ℝ × ℝ))
21 1st2nd2 8010 . . . . . . . . . . 11 (𝑛 ∈ (ℝ × ℝ) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2322fveq2d 6865 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩))
24 df-ov 7393 . . . . . . . . 9 ((1st𝑛)[,](2nd𝑛)) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩)
2523, 24eqtr4di 2783 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ((1st𝑛)[,](2nd𝑛)))
26 xp1st 8003 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (1st𝑛) ∈ ℝ)
2720, 26syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (1st𝑛) ∈ ℝ)
28 xp2nd 8004 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (2nd𝑛) ∈ ℝ)
2920, 28syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (2nd𝑛) ∈ ℝ)
30 iccmbl 25474 . . . . . . . . 9 (((1st𝑛) ∈ ℝ ∧ (2nd𝑛) ∈ ℝ) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3127, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3225, 31eqeltrd 2829 . . . . . . 7 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) ∈ dom vol)
3332ralrimiva 3126 . . . . . 6 ((𝜑𝐺 ∈ Fin) → ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
34 finiunmbl 25452 . . . . . 6 ((𝐺 ∈ Fin ∧ ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
3510, 33, 34syl2anc 584 . . . . 5 ((𝜑𝐺 ∈ Fin) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
369, 35eqeltrrid 2834 . . . 4 ((𝜑𝐺 ∈ Fin) → ([,] “ 𝐺) ∈ dom vol)
375, 36sylan2br 595 . . 3 ((𝜑𝐺 ≺ ω) → ([,] “ 𝐺) ∈ dom vol)
38 rnco2 6229 . . . . . . . . 9 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
39 f1ofo 6810 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–onto𝐺)
4039adantl 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–onto𝐺)
41 forn 6778 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐺 → ran 𝑓 = 𝐺)
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran 𝑓 = 𝐺)
4342imaeq2d 6034 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ ran 𝑓) = ([,] “ 𝐺))
4438, 43eqtrid 2777 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
4544unieqd 4887 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
46 f1of 6803 . . . . . . . . 9 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ⟶𝐺)
4712, 15sstrdi 3962 . . . . . . . . 9 (𝜑𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ)))
48 fss 6707 . . . . . . . . 9 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4946, 47, 48syl2anr 597 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
50 fss 6707 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ran 𝐹) → 𝑓:ℕ⟶ran 𝐹)
5146, 12, 50syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶ran 𝐹)
52 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑎 ∈ ℕ)
53 ffvelcdm 7056 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑎 ∈ ℕ) → (𝑓𝑎) ∈ ran 𝐹)
5451, 52, 53syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ ran 𝐹)
55 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
56 ffvelcdm 7056 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑏 ∈ ℕ) → (𝑓𝑏) ∈ ran 𝐹)
5751, 55, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ ran 𝐹)
581dyaddisj 25504 . . . . . . . . . . . 12 (((𝑓𝑎) ∈ ran 𝐹 ∧ (𝑓𝑏) ∈ ran 𝐹) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
5954, 57, 58syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
60 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑏) → ([,]‘𝑤) = ([,]‘(𝑓𝑏)))
6160sseq2d 3982 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏))))
62 eqeq2 2742 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → ((𝑓𝑎) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
6361, 62imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑏) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
6446adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶𝐺)
65 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑎 ∈ ℕ) → (𝑓𝑎) ∈ 𝐺)
6664, 52, 65syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐺)
67 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → ([,]‘𝑧) = ([,]‘(𝑓𝑎)))
6867sseq1d 3981 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤)))
69 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (𝑧 = 𝑤 ↔ (𝑓𝑎) = 𝑤))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑎) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7170ralbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑎) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7271, 2elrab2 3665 . . . . . . . . . . . . . . . 16 ((𝑓𝑎) ∈ 𝐺 ↔ ((𝑓𝑎) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7372simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑎) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
7466, 73syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
75 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑏 ∈ ℕ) → (𝑓𝑏) ∈ 𝐺)
7664, 55, 75syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐺)
7711, 76sselid 3947 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐴)
7863, 74, 77rspcdva 3592 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏)))
79 f1of1 6802 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–1-1𝐺)
8079adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–1-1𝐺)
81 f1fveq 7240 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1𝐺 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
8280, 81sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
83 orc 867 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
8482, 83biimtrdi 253 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
8578, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
86 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ([,]‘𝑤) = ([,]‘(𝑓𝑎)))
8786sseq2d 3982 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎))))
88 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑏) = (𝑓𝑎)))
89 eqcom 2737 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) = (𝑓𝑎) ↔ (𝑓𝑎) = (𝑓𝑏))
9088, 89bitrdi 287 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
9187, 90imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑎) → ((([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
92 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → ([,]‘𝑧) = ([,]‘(𝑓𝑏)))
9392sseq1d 3981 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤)))
94 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (𝑧 = 𝑤 ↔ (𝑓𝑏) = 𝑤))
9593, 94imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑏) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9695ralbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑏) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9796, 2elrab2 3665 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) ∈ 𝐺 ↔ ((𝑓𝑏) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9897simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑏) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
9976, 98syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
10011, 66sselid 3947 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐴)
10191, 99, 100rspcdva 3592 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏)))
102101, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
103 olc 868 . . . . . . . . . . . . 13 ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
104103a1i 11 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10585, 102, 1043jaod 1431 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10659, 105mpd 15 . . . . . . . . . 10 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
107106ralrimivva 3181 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
108 2fveq3 6866 . . . . . . . . . 10 (𝑎 = 𝑏 → ((,)‘(𝑓𝑎)) = ((,)‘(𝑓𝑏)))
109108disjor 5092 . . . . . . . . 9 (Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
110107, 109sylibr 234 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)))
111 eqid 2730 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
11249, 110, 111uniiccmbl 25498 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) ∈ dom vol)
11345, 112eqeltrrd 2830 . . . . . 6 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ 𝐺) ∈ dom vol)
114113ex 412 . . . . 5 (𝜑 → (𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
115114exlimdv 1933 . . . 4 (𝜑 → (∃𝑓 𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
116 nnenom 13952 . . . . . 6 ℕ ≈ ω
117 ensym 8977 . . . . . 6 (𝐺 ≈ ω → ω ≈ 𝐺)
118 entr 8980 . . . . . 6 ((ℕ ≈ ω ∧ ω ≈ 𝐺) → ℕ ≈ 𝐺)
119116, 117, 118sylancr 587 . . . . 5 (𝐺 ≈ ω → ℕ ≈ 𝐺)
120 bren 8931 . . . . 5 (ℕ ≈ 𝐺 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
121119, 120sylib 218 . . . 4 (𝐺 ≈ ω → ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
122115, 121impel 505 . . 3 ((𝜑𝐺 ≈ ω) → ([,] “ 𝐺) ∈ dom vol)
123 reex 11166 . . . . . . . . 9 ℝ ∈ V
124123, 123xpex 7732 . . . . . . . 8 (ℝ × ℝ) ∈ V
125124inex2 5276 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
126125, 15ssexi 5280 . . . . . 6 ran 𝐹 ∈ V
127 ssdomg 8974 . . . . . 6 (ran 𝐹 ∈ V → (𝐺 ⊆ ran 𝐹𝐺 ≼ ran 𝐹))
128126, 12, 127mpsyl 68 . . . . 5 (𝜑𝐺 ≼ ran 𝐹)
129 omelon 9606 . . . . . . . 8 ω ∈ On
130 znnen 16187 . . . . . . . . . . . 12 ℤ ≈ ℕ
131130, 116entri 8982 . . . . . . . . . . 11 ℤ ≈ ω
132 nn0ennn 13951 . . . . . . . . . . . 12 0 ≈ ℕ
133132, 116entri 8982 . . . . . . . . . . 11 0 ≈ ω
134 xpen 9110 . . . . . . . . . . 11 ((ℤ ≈ ω ∧ ℕ0 ≈ ω) → (ℤ × ℕ0) ≈ (ω × ω))
135131, 133, 134mp2an 692 . . . . . . . . . 10 (ℤ × ℕ0) ≈ (ω × ω)
136 xpomen 9975 . . . . . . . . . 10 (ω × ω) ≈ ω
137135, 136entri 8982 . . . . . . . . 9 (ℤ × ℕ0) ≈ ω
138137ensymi 8978 . . . . . . . 8 ω ≈ (ℤ × ℕ0)
139 isnumi 9906 . . . . . . . 8 ((ω ∈ On ∧ ω ≈ (ℤ × ℕ0)) → (ℤ × ℕ0) ∈ dom card)
140129, 138, 139mp2an 692 . . . . . . 7 (ℤ × ℕ0) ∈ dom card
141 ffn 6691 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14213, 141ax-mp 5 . . . . . . . 8 𝐹 Fn (ℤ × ℕ0)
143 dffn4 6781 . . . . . . . 8 (𝐹 Fn (ℤ × ℕ0) ↔ 𝐹:(ℤ × ℕ0)–onto→ran 𝐹)
144142, 143mpbi 230 . . . . . . 7 𝐹:(ℤ × ℕ0)–onto→ran 𝐹
145 fodomnum 10017 . . . . . . 7 ((ℤ × ℕ0) ∈ dom card → (𝐹:(ℤ × ℕ0)–onto→ran 𝐹 → ran 𝐹 ≼ (ℤ × ℕ0)))
146140, 144, 145mp2 9 . . . . . 6 ran 𝐹 ≼ (ℤ × ℕ0)
147 domentr 8987 . . . . . 6 ((ran 𝐹 ≼ (ℤ × ℕ0) ∧ (ℤ × ℕ0) ≈ ω) → ran 𝐹 ≼ ω)
148146, 137, 147mp2an 692 . . . . 5 ran 𝐹 ≼ ω
149 domtr 8981 . . . . 5 ((𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω) → 𝐺 ≼ ω)
150128, 148, 149sylancl 586 . . . 4 (𝜑𝐺 ≼ ω)
151 brdom2 8956 . . . 4 (𝐺 ≼ ω ↔ (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
152150, 151sylib 218 . . 3 (𝜑 → (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
15337, 122, 152mpjaodan 960 . 2 (𝜑 ([,] “ 𝐺) ∈ dom vol)
1544, 153eqeltrd 2829 1 (𝜑 ([,] “ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  cop 4598   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110   × cxp 5639  dom cdm 5641  ran crn 5642  cima 5644  ccom 5645  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  1st c1st 7969  2nd c2nd 7970  cen 8918  cdom 8919  csdm 8920  Fincfn 8921  cardccrd 9895  cr 11074  1c1 11076   + caddc 11078  *cxr 11214  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  (,)cioo 13313  [,]cicc 13316  seqcseq 13973  cexp 14033  abscabs 15207  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373
This theorem is referenced by:  opnmbllem  25509
  Copyright terms: Public domain W3C validator