MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Visualization version   GIF version

Theorem dyadmbl 24204
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbl (𝜑 ([,] “ 𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbl
Dummy variables 𝑓 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2 dyadmbl.2 . . 3 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
3 dyadmbl.3 . . 3 (𝜑𝐴 ⊆ ran 𝐹)
41, 2, 3dyadmbllem 24203 . 2 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
5 isfinite 9099 . . . 4 (𝐺 ∈ Fin ↔ 𝐺 ≺ ω)
6 iccf 12826 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 ffun 6490 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
8 funiunfv 6985 . . . . . 6 (Fun [,] → 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺))
96, 7, 8mp2b 10 . . . . 5 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺)
10 simpr 488 . . . . . 6 ((𝜑𝐺 ∈ Fin) → 𝐺 ∈ Fin)
112ssrab3 4008 . . . . . . . . . . . . . . 15 𝐺𝐴
1211, 3sstrid 3926 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ ran 𝐹)
131dyadf 24195 . . . . . . . . . . . . . . . 16 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
14 frn 6493 . . . . . . . . . . . . . . . 16 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
16 inss2 4156 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1715, 16sstri 3924 . . . . . . . . . . . . . 14 ran 𝐹 ⊆ (ℝ × ℝ)
1812, 17sstrdi 3927 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (ℝ × ℝ))
1918adantr 484 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ Fin) → 𝐺 ⊆ (ℝ × ℝ))
2019sselda 3915 . . . . . . . . . . 11 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 ∈ (ℝ × ℝ))
21 1st2nd2 7710 . . . . . . . . . . 11 (𝑛 ∈ (ℝ × ℝ) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2322fveq2d 6649 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩))
24 df-ov 7138 . . . . . . . . 9 ((1st𝑛)[,](2nd𝑛)) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩)
2523, 24eqtr4di 2851 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ((1st𝑛)[,](2nd𝑛)))
26 xp1st 7703 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (1st𝑛) ∈ ℝ)
2720, 26syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (1st𝑛) ∈ ℝ)
28 xp2nd 7704 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (2nd𝑛) ∈ ℝ)
2920, 28syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (2nd𝑛) ∈ ℝ)
30 iccmbl 24170 . . . . . . . . 9 (((1st𝑛) ∈ ℝ ∧ (2nd𝑛) ∈ ℝ) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3127, 29, 30syl2anc 587 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3225, 31eqeltrd 2890 . . . . . . 7 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) ∈ dom vol)
3332ralrimiva 3149 . . . . . 6 ((𝜑𝐺 ∈ Fin) → ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
34 finiunmbl 24148 . . . . . 6 ((𝐺 ∈ Fin ∧ ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
3510, 33, 34syl2anc 587 . . . . 5 ((𝜑𝐺 ∈ Fin) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
369, 35eqeltrrid 2895 . . . 4 ((𝜑𝐺 ∈ Fin) → ([,] “ 𝐺) ∈ dom vol)
375, 36sylan2br 597 . . 3 ((𝜑𝐺 ≺ ω) → ([,] “ 𝐺) ∈ dom vol)
38 rnco2 6073 . . . . . . . . 9 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
39 f1ofo 6597 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–onto𝐺)
4039adantl 485 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–onto𝐺)
41 forn 6568 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐺 → ran 𝑓 = 𝐺)
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran 𝑓 = 𝐺)
4342imaeq2d 5896 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ ran 𝑓) = ([,] “ 𝐺))
4438, 43syl5eq 2845 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
4544unieqd 4814 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
46 f1of 6590 . . . . . . . . 9 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ⟶𝐺)
4712, 15sstrdi 3927 . . . . . . . . 9 (𝜑𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ)))
48 fss 6501 . . . . . . . . 9 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4946, 47, 48syl2anr 599 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
50 fss 6501 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ran 𝐹) → 𝑓:ℕ⟶ran 𝐹)
5146, 12, 50syl2anr 599 . . . . . . . . . . . . 13 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶ran 𝐹)
52 simpl 486 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑎 ∈ ℕ)
53 ffvelrn 6826 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑎 ∈ ℕ) → (𝑓𝑎) ∈ ran 𝐹)
5451, 52, 53syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ ran 𝐹)
55 simpr 488 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
56 ffvelrn 6826 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑏 ∈ ℕ) → (𝑓𝑏) ∈ ran 𝐹)
5751, 55, 56syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ ran 𝐹)
581dyaddisj 24200 . . . . . . . . . . . 12 (((𝑓𝑎) ∈ ran 𝐹 ∧ (𝑓𝑏) ∈ ran 𝐹) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
5954, 57, 58syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
60 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑏) → ([,]‘𝑤) = ([,]‘(𝑓𝑏)))
6160sseq2d 3947 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏))))
62 eqeq2 2810 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → ((𝑓𝑎) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
6361, 62imbi12d 348 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑏) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
6446adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶𝐺)
65 ffvelrn 6826 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑎 ∈ ℕ) → (𝑓𝑎) ∈ 𝐺)
6664, 52, 65syl2an 598 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐺)
67 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → ([,]‘𝑧) = ([,]‘(𝑓𝑎)))
6867sseq1d 3946 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤)))
69 eqeq1 2802 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (𝑧 = 𝑤 ↔ (𝑓𝑎) = 𝑤))
7068, 69imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑎) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7170ralbidv 3162 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑎) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7271, 2elrab2 3631 . . . . . . . . . . . . . . . 16 ((𝑓𝑎) ∈ 𝐺 ↔ ((𝑓𝑎) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7372simprbi 500 . . . . . . . . . . . . . . 15 ((𝑓𝑎) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
7466, 73syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
75 ffvelrn 6826 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑏 ∈ ℕ) → (𝑓𝑏) ∈ 𝐺)
7664, 55, 75syl2an 598 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐺)
7711, 76sseldi 3913 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐴)
7863, 74, 77rspcdva 3573 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏)))
79 f1of1 6589 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–1-1𝐺)
8079adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–1-1𝐺)
81 f1fveq 6998 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1𝐺 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
8280, 81sylan 583 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
83 orc 864 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
8482, 83syl6bi 256 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
8578, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
86 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ([,]‘𝑤) = ([,]‘(𝑓𝑎)))
8786sseq2d 3947 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎))))
88 eqeq2 2810 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑏) = (𝑓𝑎)))
89 eqcom 2805 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) = (𝑓𝑎) ↔ (𝑓𝑎) = (𝑓𝑏))
9088, 89syl6bb 290 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
9187, 90imbi12d 348 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑎) → ((([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
92 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → ([,]‘𝑧) = ([,]‘(𝑓𝑏)))
9392sseq1d 3946 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤)))
94 eqeq1 2802 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (𝑧 = 𝑤 ↔ (𝑓𝑏) = 𝑤))
9593, 94imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑏) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9695ralbidv 3162 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑏) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9796, 2elrab2 3631 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) ∈ 𝐺 ↔ ((𝑓𝑏) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9897simprbi 500 . . . . . . . . . . . . . . 15 ((𝑓𝑏) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
9976, 98syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
10011, 66sseldi 3913 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐴)
10191, 99, 100rspcdva 3573 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏)))
102101, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
103 olc 865 . . . . . . . . . . . . 13 ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
104103a1i 11 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10585, 102, 1043jaod 1425 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10659, 105mpd 15 . . . . . . . . . 10 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
107106ralrimivva 3156 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
108 2fveq3 6650 . . . . . . . . . 10 (𝑎 = 𝑏 → ((,)‘(𝑓𝑎)) = ((,)‘(𝑓𝑏)))
109108disjor 5010 . . . . . . . . 9 (Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
110107, 109sylibr 237 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)))
111 eqid 2798 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
11249, 110, 111uniiccmbl 24194 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) ∈ dom vol)
11345, 112eqeltrrd 2891 . . . . . 6 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ 𝐺) ∈ dom vol)
114113ex 416 . . . . 5 (𝜑 → (𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
115114exlimdv 1934 . . . 4 (𝜑 → (∃𝑓 𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
116 nnenom 13343 . . . . . 6 ℕ ≈ ω
117 ensym 8541 . . . . . 6 (𝐺 ≈ ω → ω ≈ 𝐺)
118 entr 8544 . . . . . 6 ((ℕ ≈ ω ∧ ω ≈ 𝐺) → ℕ ≈ 𝐺)
119116, 117, 118sylancr 590 . . . . 5 (𝐺 ≈ ω → ℕ ≈ 𝐺)
120 bren 8501 . . . . 5 (ℕ ≈ 𝐺 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
121119, 120sylib 221 . . . 4 (𝐺 ≈ ω → ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
122115, 121impel 509 . . 3 ((𝜑𝐺 ≈ ω) → ([,] “ 𝐺) ∈ dom vol)
123 reex 10617 . . . . . . . . 9 ℝ ∈ V
124123, 123xpex 7456 . . . . . . . 8 (ℝ × ℝ) ∈ V
125124inex2 5186 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
126125, 15ssexi 5190 . . . . . 6 ran 𝐹 ∈ V
127 ssdomg 8538 . . . . . 6 (ran 𝐹 ∈ V → (𝐺 ⊆ ran 𝐹𝐺 ≼ ran 𝐹))
128126, 12, 127mpsyl 68 . . . . 5 (𝜑𝐺 ≼ ran 𝐹)
129 omelon 9093 . . . . . . . 8 ω ∈ On
130 znnen 15557 . . . . . . . . . . . 12 ℤ ≈ ℕ
131130, 116entri 8546 . . . . . . . . . . 11 ℤ ≈ ω
132 nn0ennn 13342 . . . . . . . . . . . 12 0 ≈ ℕ
133132, 116entri 8546 . . . . . . . . . . 11 0 ≈ ω
134 xpen 8664 . . . . . . . . . . 11 ((ℤ ≈ ω ∧ ℕ0 ≈ ω) → (ℤ × ℕ0) ≈ (ω × ω))
135131, 133, 134mp2an 691 . . . . . . . . . 10 (ℤ × ℕ0) ≈ (ω × ω)
136 xpomen 9426 . . . . . . . . . 10 (ω × ω) ≈ ω
137135, 136entri 8546 . . . . . . . . 9 (ℤ × ℕ0) ≈ ω
138137ensymi 8542 . . . . . . . 8 ω ≈ (ℤ × ℕ0)
139 isnumi 9359 . . . . . . . 8 ((ω ∈ On ∧ ω ≈ (ℤ × ℕ0)) → (ℤ × ℕ0) ∈ dom card)
140129, 138, 139mp2an 691 . . . . . . 7 (ℤ × ℕ0) ∈ dom card
141 ffn 6487 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14213, 141ax-mp 5 . . . . . . . 8 𝐹 Fn (ℤ × ℕ0)
143 dffn4 6571 . . . . . . . 8 (𝐹 Fn (ℤ × ℕ0) ↔ 𝐹:(ℤ × ℕ0)–onto→ran 𝐹)
144142, 143mpbi 233 . . . . . . 7 𝐹:(ℤ × ℕ0)–onto→ran 𝐹
145 fodomnum 9468 . . . . . . 7 ((ℤ × ℕ0) ∈ dom card → (𝐹:(ℤ × ℕ0)–onto→ran 𝐹 → ran 𝐹 ≼ (ℤ × ℕ0)))
146140, 144, 145mp2 9 . . . . . 6 ran 𝐹 ≼ (ℤ × ℕ0)
147 domentr 8551 . . . . . 6 ((ran 𝐹 ≼ (ℤ × ℕ0) ∧ (ℤ × ℕ0) ≈ ω) → ran 𝐹 ≼ ω)
148146, 137, 147mp2an 691 . . . . 5 ran 𝐹 ≼ ω
149 domtr 8545 . . . . 5 ((𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω) → 𝐺 ≼ ω)
150128, 148, 149sylancl 589 . . . 4 (𝜑𝐺 ≼ ω)
151 brdom2 8522 . . . 4 (𝐺 ≼ ω ↔ (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
152150, 151sylib 221 . . 3 (𝜑 → (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
15337, 122, 152mpjaodan 956 . 2 (𝜑 ([,] “ 𝐺) ∈ dom vol)
1544, 153eqeltrd 2890 1 (𝜑 ([,] “ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3o 1083   = wceq 1538  wex 1781  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  cop 4531   cuni 4800   ciun 4881  Disj wdisj 4995   class class class wbr 5030   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  1st c1st 7669  2nd c2nd 7670  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  cardccrd 9348  cr 10525  1c1 10527   + caddc 10529  *cxr 10663  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  (,)cioo 12726  [,]cicc 12729  seqcseq 13364  cexp 13425  abscabs 14585  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  opnmbllem  24205
  Copyright terms: Public domain W3C validator