MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Visualization version   GIF version

Theorem dyadmbl 25635
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbl (𝜑 ([,] “ 𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbl
Dummy variables 𝑓 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2 dyadmbl.2 . . 3 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
3 dyadmbl.3 . . 3 (𝜑𝐴 ⊆ ran 𝐹)
41, 2, 3dyadmbllem 25634 . 2 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
5 isfinite 9692 . . . 4 (𝐺 ∈ Fin ↔ 𝐺 ≺ ω)
6 iccf 13488 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 ffun 6739 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
8 funiunfv 7268 . . . . . 6 (Fun [,] → 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺))
96, 7, 8mp2b 10 . . . . 5 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺)
10 simpr 484 . . . . . 6 ((𝜑𝐺 ∈ Fin) → 𝐺 ∈ Fin)
112ssrab3 4082 . . . . . . . . . . . . . . 15 𝐺𝐴
1211, 3sstrid 3995 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ ran 𝐹)
131dyadf 25626 . . . . . . . . . . . . . . . 16 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
14 frn 6743 . . . . . . . . . . . . . . . 16 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
16 inss2 4238 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1715, 16sstri 3993 . . . . . . . . . . . . . 14 ran 𝐹 ⊆ (ℝ × ℝ)
1812, 17sstrdi 3996 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (ℝ × ℝ))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ Fin) → 𝐺 ⊆ (ℝ × ℝ))
2019sselda 3983 . . . . . . . . . . 11 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 ∈ (ℝ × ℝ))
21 1st2nd2 8053 . . . . . . . . . . 11 (𝑛 ∈ (ℝ × ℝ) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2322fveq2d 6910 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩))
24 df-ov 7434 . . . . . . . . 9 ((1st𝑛)[,](2nd𝑛)) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩)
2523, 24eqtr4di 2795 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ((1st𝑛)[,](2nd𝑛)))
26 xp1st 8046 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (1st𝑛) ∈ ℝ)
2720, 26syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (1st𝑛) ∈ ℝ)
28 xp2nd 8047 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (2nd𝑛) ∈ ℝ)
2920, 28syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (2nd𝑛) ∈ ℝ)
30 iccmbl 25601 . . . . . . . . 9 (((1st𝑛) ∈ ℝ ∧ (2nd𝑛) ∈ ℝ) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3127, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3225, 31eqeltrd 2841 . . . . . . 7 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) ∈ dom vol)
3332ralrimiva 3146 . . . . . 6 ((𝜑𝐺 ∈ Fin) → ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
34 finiunmbl 25579 . . . . . 6 ((𝐺 ∈ Fin ∧ ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
3510, 33, 34syl2anc 584 . . . . 5 ((𝜑𝐺 ∈ Fin) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
369, 35eqeltrrid 2846 . . . 4 ((𝜑𝐺 ∈ Fin) → ([,] “ 𝐺) ∈ dom vol)
375, 36sylan2br 595 . . 3 ((𝜑𝐺 ≺ ω) → ([,] “ 𝐺) ∈ dom vol)
38 rnco2 6273 . . . . . . . . 9 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
39 f1ofo 6855 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–onto𝐺)
4039adantl 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–onto𝐺)
41 forn 6823 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐺 → ran 𝑓 = 𝐺)
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran 𝑓 = 𝐺)
4342imaeq2d 6078 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ ran 𝑓) = ([,] “ 𝐺))
4438, 43eqtrid 2789 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
4544unieqd 4920 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
46 f1of 6848 . . . . . . . . 9 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ⟶𝐺)
4712, 15sstrdi 3996 . . . . . . . . 9 (𝜑𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ)))
48 fss 6752 . . . . . . . . 9 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4946, 47, 48syl2anr 597 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
50 fss 6752 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ran 𝐹) → 𝑓:ℕ⟶ran 𝐹)
5146, 12, 50syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶ran 𝐹)
52 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑎 ∈ ℕ)
53 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑎 ∈ ℕ) → (𝑓𝑎) ∈ ran 𝐹)
5451, 52, 53syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ ran 𝐹)
55 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
56 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑏 ∈ ℕ) → (𝑓𝑏) ∈ ran 𝐹)
5751, 55, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ ran 𝐹)
581dyaddisj 25631 . . . . . . . . . . . 12 (((𝑓𝑎) ∈ ran 𝐹 ∧ (𝑓𝑏) ∈ ran 𝐹) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
5954, 57, 58syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
60 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑏) → ([,]‘𝑤) = ([,]‘(𝑓𝑏)))
6160sseq2d 4016 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏))))
62 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → ((𝑓𝑎) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
6361, 62imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑏) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
6446adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶𝐺)
65 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑎 ∈ ℕ) → (𝑓𝑎) ∈ 𝐺)
6664, 52, 65syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐺)
67 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → ([,]‘𝑧) = ([,]‘(𝑓𝑎)))
6867sseq1d 4015 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤)))
69 eqeq1 2741 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (𝑧 = 𝑤 ↔ (𝑓𝑎) = 𝑤))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑎) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7170ralbidv 3178 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑎) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7271, 2elrab2 3695 . . . . . . . . . . . . . . . 16 ((𝑓𝑎) ∈ 𝐺 ↔ ((𝑓𝑎) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7372simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑎) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
7466, 73syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
75 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑏 ∈ ℕ) → (𝑓𝑏) ∈ 𝐺)
7664, 55, 75syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐺)
7711, 76sselid 3981 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐴)
7863, 74, 77rspcdva 3623 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏)))
79 f1of1 6847 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–1-1𝐺)
8079adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–1-1𝐺)
81 f1fveq 7282 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1𝐺 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
8280, 81sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
83 orc 868 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
8482, 83biimtrdi 253 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
8578, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
86 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ([,]‘𝑤) = ([,]‘(𝑓𝑎)))
8786sseq2d 4016 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎))))
88 eqeq2 2749 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑏) = (𝑓𝑎)))
89 eqcom 2744 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) = (𝑓𝑎) ↔ (𝑓𝑎) = (𝑓𝑏))
9088, 89bitrdi 287 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
9187, 90imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑎) → ((([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
92 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → ([,]‘𝑧) = ([,]‘(𝑓𝑏)))
9392sseq1d 4015 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤)))
94 eqeq1 2741 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (𝑧 = 𝑤 ↔ (𝑓𝑏) = 𝑤))
9593, 94imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑏) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9695ralbidv 3178 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑏) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9796, 2elrab2 3695 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) ∈ 𝐺 ↔ ((𝑓𝑏) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9897simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑏) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
9976, 98syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
10011, 66sselid 3981 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐴)
10191, 99, 100rspcdva 3623 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏)))
102101, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
103 olc 869 . . . . . . . . . . . . 13 ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
104103a1i 11 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10585, 102, 1043jaod 1431 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10659, 105mpd 15 . . . . . . . . . 10 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
107106ralrimivva 3202 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
108 2fveq3 6911 . . . . . . . . . 10 (𝑎 = 𝑏 → ((,)‘(𝑓𝑎)) = ((,)‘(𝑓𝑏)))
109108disjor 5125 . . . . . . . . 9 (Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
110107, 109sylibr 234 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)))
111 eqid 2737 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
11249, 110, 111uniiccmbl 25625 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) ∈ dom vol)
11345, 112eqeltrrd 2842 . . . . . 6 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ 𝐺) ∈ dom vol)
114113ex 412 . . . . 5 (𝜑 → (𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
115114exlimdv 1933 . . . 4 (𝜑 → (∃𝑓 𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
116 nnenom 14021 . . . . . 6 ℕ ≈ ω
117 ensym 9043 . . . . . 6 (𝐺 ≈ ω → ω ≈ 𝐺)
118 entr 9046 . . . . . 6 ((ℕ ≈ ω ∧ ω ≈ 𝐺) → ℕ ≈ 𝐺)
119116, 117, 118sylancr 587 . . . . 5 (𝐺 ≈ ω → ℕ ≈ 𝐺)
120 bren 8995 . . . . 5 (ℕ ≈ 𝐺 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
121119, 120sylib 218 . . . 4 (𝐺 ≈ ω → ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
122115, 121impel 505 . . 3 ((𝜑𝐺 ≈ ω) → ([,] “ 𝐺) ∈ dom vol)
123 reex 11246 . . . . . . . . 9 ℝ ∈ V
124123, 123xpex 7773 . . . . . . . 8 (ℝ × ℝ) ∈ V
125124inex2 5318 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
126125, 15ssexi 5322 . . . . . 6 ran 𝐹 ∈ V
127 ssdomg 9040 . . . . . 6 (ran 𝐹 ∈ V → (𝐺 ⊆ ran 𝐹𝐺 ≼ ran 𝐹))
128126, 12, 127mpsyl 68 . . . . 5 (𝜑𝐺 ≼ ran 𝐹)
129 omelon 9686 . . . . . . . 8 ω ∈ On
130 znnen 16248 . . . . . . . . . . . 12 ℤ ≈ ℕ
131130, 116entri 9048 . . . . . . . . . . 11 ℤ ≈ ω
132 nn0ennn 14020 . . . . . . . . . . . 12 0 ≈ ℕ
133132, 116entri 9048 . . . . . . . . . . 11 0 ≈ ω
134 xpen 9180 . . . . . . . . . . 11 ((ℤ ≈ ω ∧ ℕ0 ≈ ω) → (ℤ × ℕ0) ≈ (ω × ω))
135131, 133, 134mp2an 692 . . . . . . . . . 10 (ℤ × ℕ0) ≈ (ω × ω)
136 xpomen 10055 . . . . . . . . . 10 (ω × ω) ≈ ω
137135, 136entri 9048 . . . . . . . . 9 (ℤ × ℕ0) ≈ ω
138137ensymi 9044 . . . . . . . 8 ω ≈ (ℤ × ℕ0)
139 isnumi 9986 . . . . . . . 8 ((ω ∈ On ∧ ω ≈ (ℤ × ℕ0)) → (ℤ × ℕ0) ∈ dom card)
140129, 138, 139mp2an 692 . . . . . . 7 (ℤ × ℕ0) ∈ dom card
141 ffn 6736 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14213, 141ax-mp 5 . . . . . . . 8 𝐹 Fn (ℤ × ℕ0)
143 dffn4 6826 . . . . . . . 8 (𝐹 Fn (ℤ × ℕ0) ↔ 𝐹:(ℤ × ℕ0)–onto→ran 𝐹)
144142, 143mpbi 230 . . . . . . 7 𝐹:(ℤ × ℕ0)–onto→ran 𝐹
145 fodomnum 10097 . . . . . . 7 ((ℤ × ℕ0) ∈ dom card → (𝐹:(ℤ × ℕ0)–onto→ran 𝐹 → ran 𝐹 ≼ (ℤ × ℕ0)))
146140, 144, 145mp2 9 . . . . . 6 ran 𝐹 ≼ (ℤ × ℕ0)
147 domentr 9053 . . . . . 6 ((ran 𝐹 ≼ (ℤ × ℕ0) ∧ (ℤ × ℕ0) ≈ ω) → ran 𝐹 ≼ ω)
148146, 137, 147mp2an 692 . . . . 5 ran 𝐹 ≼ ω
149 domtr 9047 . . . . 5 ((𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω) → 𝐺 ≼ ω)
150128, 148, 149sylancl 586 . . . 4 (𝜑𝐺 ≼ ω)
151 brdom2 9022 . . . 4 (𝐺 ≼ ω ↔ (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
152150, 151sylib 218 . . 3 (𝜑 → (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
15337, 122, 152mpjaodan 961 . 2 (𝜑 ([,] “ 𝐺) ∈ dom vol)
1544, 153eqeltrd 2841 1 (𝜑 ([,] “ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wex 1779  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  cop 4632   cuni 4907   ciun 4991  Disj wdisj 5110   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686  cima 5688  ccom 5689  Oncon0 6384  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887  1st c1st 8012  2nd c2nd 8013  cen 8982  cdom 8983  csdm 8984  Fincfn 8985  cardccrd 9975  cr 11154  1c1 11156   + caddc 11158  *cxr 11294  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  (,)cioo 13387  [,]cicc 13390  seqcseq 14042  cexp 14102  abscabs 15273  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500
This theorem is referenced by:  opnmbllem  25636
  Copyright terms: Public domain W3C validator