MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Visualization version   GIF version

Theorem dyadmbl 25517
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbl (𝜑 ([,] “ 𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbl
Dummy variables 𝑓 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2 dyadmbl.2 . . 3 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
3 dyadmbl.3 . . 3 (𝜑𝐴 ⊆ ran 𝐹)
41, 2, 3dyadmbllem 25516 . 2 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
5 isfinite 9567 . . . 4 (𝐺 ∈ Fin ↔ 𝐺 ≺ ω)
6 iccf 13369 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 ffun 6659 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
8 funiunfv 7188 . . . . . 6 (Fun [,] → 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺))
96, 7, 8mp2b 10 . . . . 5 𝑛𝐺 ([,]‘𝑛) = ([,] “ 𝐺)
10 simpr 484 . . . . . 6 ((𝜑𝐺 ∈ Fin) → 𝐺 ∈ Fin)
112ssrab3 4035 . . . . . . . . . . . . . . 15 𝐺𝐴
1211, 3sstrid 3949 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ ran 𝐹)
131dyadf 25508 . . . . . . . . . . . . . . . 16 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
14 frn 6663 . . . . . . . . . . . . . . . 16 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
16 inss2 4191 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1715, 16sstri 3947 . . . . . . . . . . . . . 14 ran 𝐹 ⊆ (ℝ × ℝ)
1812, 17sstrdi 3950 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (ℝ × ℝ))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ Fin) → 𝐺 ⊆ (ℝ × ℝ))
2019sselda 3937 . . . . . . . . . . 11 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 ∈ (ℝ × ℝ))
21 1st2nd2 7970 . . . . . . . . . . 11 (𝑛 ∈ (ℝ × ℝ) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
2322fveq2d 6830 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩))
24 df-ov 7356 . . . . . . . . 9 ((1st𝑛)[,](2nd𝑛)) = ([,]‘⟨(1st𝑛), (2nd𝑛)⟩)
2523, 24eqtr4di 2782 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) = ((1st𝑛)[,](2nd𝑛)))
26 xp1st 7963 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (1st𝑛) ∈ ℝ)
2720, 26syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (1st𝑛) ∈ ℝ)
28 xp2nd 7964 . . . . . . . . . 10 (𝑛 ∈ (ℝ × ℝ) → (2nd𝑛) ∈ ℝ)
2920, 28syl 17 . . . . . . . . 9 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → (2nd𝑛) ∈ ℝ)
30 iccmbl 25483 . . . . . . . . 9 (((1st𝑛) ∈ ℝ ∧ (2nd𝑛) ∈ ℝ) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3127, 29, 30syl2anc 584 . . . . . . . 8 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ((1st𝑛)[,](2nd𝑛)) ∈ dom vol)
3225, 31eqeltrd 2828 . . . . . . 7 (((𝜑𝐺 ∈ Fin) ∧ 𝑛𝐺) → ([,]‘𝑛) ∈ dom vol)
3332ralrimiva 3121 . . . . . 6 ((𝜑𝐺 ∈ Fin) → ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
34 finiunmbl 25461 . . . . . 6 ((𝐺 ∈ Fin ∧ ∀𝑛𝐺 ([,]‘𝑛) ∈ dom vol) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
3510, 33, 34syl2anc 584 . . . . 5 ((𝜑𝐺 ∈ Fin) → 𝑛𝐺 ([,]‘𝑛) ∈ dom vol)
369, 35eqeltrrid 2833 . . . 4 ((𝜑𝐺 ∈ Fin) → ([,] “ 𝐺) ∈ dom vol)
375, 36sylan2br 595 . . 3 ((𝜑𝐺 ≺ ω) → ([,] “ 𝐺) ∈ dom vol)
38 rnco2 6206 . . . . . . . . 9 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
39 f1ofo 6775 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–onto𝐺)
4039adantl 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–onto𝐺)
41 forn 6743 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐺 → ran 𝑓 = 𝐺)
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran 𝑓 = 𝐺)
4342imaeq2d 6015 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ ran 𝑓) = ([,] “ 𝐺))
4438, 43eqtrid 2776 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
4544unieqd 4874 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) = ([,] “ 𝐺))
46 f1of 6768 . . . . . . . . 9 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ⟶𝐺)
4712, 15sstrdi 3950 . . . . . . . . 9 (𝜑𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ)))
48 fss 6672 . . . . . . . . 9 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4946, 47, 48syl2anr 597 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
50 fss 6672 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶𝐺𝐺 ⊆ ran 𝐹) → 𝑓:ℕ⟶ran 𝐹)
5146, 12, 50syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶ran 𝐹)
52 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑎 ∈ ℕ)
53 ffvelcdm 7019 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑎 ∈ ℕ) → (𝑓𝑎) ∈ ran 𝐹)
5451, 52, 53syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ ran 𝐹)
55 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → 𝑏 ∈ ℕ)
56 ffvelcdm 7019 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝐹𝑏 ∈ ℕ) → (𝑓𝑏) ∈ ran 𝐹)
5751, 55, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ ran 𝐹)
581dyaddisj 25513 . . . . . . . . . . . 12 (((𝑓𝑎) ∈ ran 𝐹 ∧ (𝑓𝑏) ∈ ran 𝐹) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
5954, 57, 58syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
60 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑏) → ([,]‘𝑤) = ([,]‘(𝑓𝑏)))
6160sseq2d 3970 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏))))
62 eqeq2 2741 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑏) → ((𝑓𝑎) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
6361, 62imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑏) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏))))
6446adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ⟶𝐺)
65 ffvelcdm 7019 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑎 ∈ ℕ) → (𝑓𝑎) ∈ 𝐺)
6664, 52, 65syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐺)
67 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑎) → ([,]‘𝑧) = ([,]‘(𝑓𝑎)))
6867sseq1d 3969 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤)))
69 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑎) → (𝑧 = 𝑤 ↔ (𝑓𝑎) = 𝑤))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑎) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7170ralbidv 3152 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑎) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7271, 2elrab2 3653 . . . . . . . . . . . . . . . 16 ((𝑓𝑎) ∈ 𝐺 ↔ ((𝑓𝑎) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤)))
7372simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑎) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
7466, 73syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑎)) ⊆ ([,]‘𝑤) → (𝑓𝑎) = 𝑤))
75 ffvelcdm 7019 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶𝐺𝑏 ∈ ℕ) → (𝑓𝑏) ∈ 𝐺)
7664, 55, 75syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐺)
7711, 76sselid 3935 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑏) ∈ 𝐴)
7863, 74, 77rspcdva 3580 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑓𝑎) = (𝑓𝑏)))
79 f1of1 6767 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐺𝑓:ℕ–1-1𝐺)
8079adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓:ℕ–1-1-onto𝐺) → 𝑓:ℕ–1-1𝐺)
81 f1fveq 7203 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1𝐺 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
8280, 81sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) ↔ 𝑎 = 𝑏))
83 orc 867 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
8482, 83biimtrdi 253 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑓𝑎) = (𝑓𝑏) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
8578, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
86 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ([,]‘𝑤) = ([,]‘(𝑓𝑎)))
8786sseq2d 3970 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎))))
88 eqeq2 2741 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑏) = (𝑓𝑎)))
89 eqcom 2736 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) = (𝑓𝑎) ↔ (𝑓𝑎) = (𝑓𝑏))
9088, 89bitrdi 287 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑎) → ((𝑓𝑏) = 𝑤 ↔ (𝑓𝑎) = (𝑓𝑏)))
9187, 90imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = (𝑓𝑎) → ((([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏))))
92 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑏) → ([,]‘𝑧) = ([,]‘(𝑓𝑏)))
9392sseq1d 3969 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤)))
94 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑏) → (𝑧 = 𝑤 ↔ (𝑓𝑏) = 𝑤))
9593, 94imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑏) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9695ralbidv 3152 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑏) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9796, 2elrab2 3653 . . . . . . . . . . . . . . . 16 ((𝑓𝑏) ∈ 𝐺 ↔ ((𝑓𝑏) ∈ 𝐴 ∧ ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤)))
9897simprbi 496 . . . . . . . . . . . . . . 15 ((𝑓𝑏) ∈ 𝐺 → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
9976, 98syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ∀𝑤𝐴 (([,]‘(𝑓𝑏)) ⊆ ([,]‘𝑤) → (𝑓𝑏) = 𝑤))
10011, 66sselid 3935 . . . . . . . . . . . . . 14 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑓𝑎) ∈ 𝐴)
10191, 99, 100rspcdva 3580 . . . . . . . . . . . . 13 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑓𝑎) = (𝑓𝑏)))
102101, 84syld 47 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
103 olc 868 . . . . . . . . . . . . 13 ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
104103a1i 11 . . . . . . . . . . . 12 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅ → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10585, 102, 1043jaod 1431 . . . . . . . . . . 11 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((([,]‘(𝑓𝑎)) ⊆ ([,]‘(𝑓𝑏)) ∨ ([,]‘(𝑓𝑏)) ⊆ ([,]‘(𝑓𝑎)) ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅)))
10659, 105mpd 15 . . . . . . . . . 10 (((𝜑𝑓:ℕ–1-1-onto𝐺) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
107106ralrimivva 3172 . . . . . . . . 9 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
108 2fveq3 6831 . . . . . . . . . 10 (𝑎 = 𝑏 → ((,)‘(𝑓𝑎)) = ((,)‘(𝑓𝑏)))
109108disjor 5077 . . . . . . . . 9 (Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ (𝑎 = 𝑏 ∨ (((,)‘(𝑓𝑎)) ∩ ((,)‘(𝑓𝑏))) = ∅))
110107, 109sylibr 234 . . . . . . . 8 ((𝜑𝑓:ℕ–1-1-onto𝐺) → Disj 𝑎 ∈ ℕ ((,)‘(𝑓𝑎)))
111 eqid 2729 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
11249, 110, 111uniiccmbl 25507 . . . . . . 7 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ran ([,] ∘ 𝑓) ∈ dom vol)
11345, 112eqeltrrd 2829 . . . . . 6 ((𝜑𝑓:ℕ–1-1-onto𝐺) → ([,] “ 𝐺) ∈ dom vol)
114113ex 412 . . . . 5 (𝜑 → (𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
115114exlimdv 1933 . . . 4 (𝜑 → (∃𝑓 𝑓:ℕ–1-1-onto𝐺 ([,] “ 𝐺) ∈ dom vol))
116 nnenom 13905 . . . . . 6 ℕ ≈ ω
117 ensym 8935 . . . . . 6 (𝐺 ≈ ω → ω ≈ 𝐺)
118 entr 8938 . . . . . 6 ((ℕ ≈ ω ∧ ω ≈ 𝐺) → ℕ ≈ 𝐺)
119116, 117, 118sylancr 587 . . . . 5 (𝐺 ≈ ω → ℕ ≈ 𝐺)
120 bren 8889 . . . . 5 (ℕ ≈ 𝐺 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
121119, 120sylib 218 . . . 4 (𝐺 ≈ ω → ∃𝑓 𝑓:ℕ–1-1-onto𝐺)
122115, 121impel 505 . . 3 ((𝜑𝐺 ≈ ω) → ([,] “ 𝐺) ∈ dom vol)
123 reex 11119 . . . . . . . . 9 ℝ ∈ V
124123, 123xpex 7693 . . . . . . . 8 (ℝ × ℝ) ∈ V
125124inex2 5260 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
126125, 15ssexi 5264 . . . . . 6 ran 𝐹 ∈ V
127 ssdomg 8932 . . . . . 6 (ran 𝐹 ∈ V → (𝐺 ⊆ ran 𝐹𝐺 ≼ ran 𝐹))
128126, 12, 127mpsyl 68 . . . . 5 (𝜑𝐺 ≼ ran 𝐹)
129 omelon 9561 . . . . . . . 8 ω ∈ On
130 znnen 16139 . . . . . . . . . . . 12 ℤ ≈ ℕ
131130, 116entri 8940 . . . . . . . . . . 11 ℤ ≈ ω
132 nn0ennn 13904 . . . . . . . . . . . 12 0 ≈ ℕ
133132, 116entri 8940 . . . . . . . . . . 11 0 ≈ ω
134 xpen 9064 . . . . . . . . . . 11 ((ℤ ≈ ω ∧ ℕ0 ≈ ω) → (ℤ × ℕ0) ≈ (ω × ω))
135131, 133, 134mp2an 692 . . . . . . . . . 10 (ℤ × ℕ0) ≈ (ω × ω)
136 xpomen 9928 . . . . . . . . . 10 (ω × ω) ≈ ω
137135, 136entri 8940 . . . . . . . . 9 (ℤ × ℕ0) ≈ ω
138137ensymi 8936 . . . . . . . 8 ω ≈ (ℤ × ℕ0)
139 isnumi 9861 . . . . . . . 8 ((ω ∈ On ∧ ω ≈ (ℤ × ℕ0)) → (ℤ × ℕ0) ∈ dom card)
140129, 138, 139mp2an 692 . . . . . . 7 (ℤ × ℕ0) ∈ dom card
141 ffn 6656 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14213, 141ax-mp 5 . . . . . . . 8 𝐹 Fn (ℤ × ℕ0)
143 dffn4 6746 . . . . . . . 8 (𝐹 Fn (ℤ × ℕ0) ↔ 𝐹:(ℤ × ℕ0)–onto→ran 𝐹)
144142, 143mpbi 230 . . . . . . 7 𝐹:(ℤ × ℕ0)–onto→ran 𝐹
145 fodomnum 9970 . . . . . . 7 ((ℤ × ℕ0) ∈ dom card → (𝐹:(ℤ × ℕ0)–onto→ran 𝐹 → ran 𝐹 ≼ (ℤ × ℕ0)))
146140, 144, 145mp2 9 . . . . . 6 ran 𝐹 ≼ (ℤ × ℕ0)
147 domentr 8945 . . . . . 6 ((ran 𝐹 ≼ (ℤ × ℕ0) ∧ (ℤ × ℕ0) ≈ ω) → ran 𝐹 ≼ ω)
148146, 137, 147mp2an 692 . . . . 5 ran 𝐹 ≼ ω
149 domtr 8939 . . . . 5 ((𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω) → 𝐺 ≼ ω)
150128, 148, 149sylancl 586 . . . 4 (𝜑𝐺 ≼ ω)
151 brdom2 8914 . . . 4 (𝐺 ≼ ω ↔ (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
152150, 151sylib 218 . . 3 (𝜑 → (𝐺 ≺ ω ∨ 𝐺 ≈ ω))
15337, 122, 152mpjaodan 960 . 2 (𝜑 ([,] “ 𝐺) ∈ dom vol)
1544, 153eqeltrd 2828 1 (𝜑 ([,] “ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  cop 4585   cuni 4861   ciun 4944  Disj wdisj 5062   class class class wbr 5095   × cxp 5621  dom cdm 5623  ran crn 5624  cima 5626  ccom 5627  Oncon0 6311  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cmpo 7355  ωcom 7806  1st c1st 7929  2nd c2nd 7930  cen 8876  cdom 8877  csdm 8878  Fincfn 8879  cardccrd 9850  cr 11027  1c1 11029   + caddc 11031  *cxr 11167  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  (,)cioo 13266  [,]cicc 13269  seqcseq 13926  cexp 13986  abscabs 15159  volcvol 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382
This theorem is referenced by:  opnmbllem  25518
  Copyright terms: Public domain W3C validator