MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsdisj Structured version   Visualization version   GIF version

Theorem cshwsdisj 17133
Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwsdisj ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖,𝑛   𝑛,𝑊
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem cshwsdisj
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 orc 867 . . . . 5 (𝑛 = 𝑗 → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
21a1d 25 . . . 4 (𝑛 = 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
3 simprl 771 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)))
4 simprrl 781 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑛 ∈ (0..^(♯‘𝑊)))
5 simprrr 782 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ∈ (0..^(♯‘𝑊)))
6 necom 2992 . . . . . . . . . 10 (𝑛𝑗𝑗𝑛)
76biimpi 216 . . . . . . . . 9 (𝑛𝑗𝑗𝑛)
87adantr 480 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗𝑛)
9 cshwshash.0 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
109cshwshashlem3 17132 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)))
1110imp 406 . . . . . . . 8 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛)) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
123, 4, 5, 8, 11syl13anc 1371 . . . . . . 7 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
13 disjsn2 4717 . . . . . . 7 ((𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1412, 13syl 17 . . . . . 6 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1514olcd 874 . . . . 5 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1615ex 412 . . . 4 (𝑛𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
172, 16pm2.61ine 3023 . . 3 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1817ralrimivva 3200 . 2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
19 oveq2 7439 . . . 4 (𝑛 = 𝑗 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑗))
2019sneqd 4643 . . 3 (𝑛 = 𝑗 → {(𝑊 cyclShift 𝑛)} = {(𝑊 cyclShift 𝑗)})
2120disjor 5130 . 2 (Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} ↔ ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
2218, 21sylibr 234 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cin 3962  c0 4339  {csn 4631  Disj wdisj 5115  cfv 6563  (class class class)co 7431  0cc0 11153  ..^cfzo 13691  chash 14366  Word cword 14549   cyclShift ccsh 14823  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-reps 14804  df-csh 14824  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800
This theorem is referenced by:  cshwshashnsame  17138
  Copyright terms: Public domain W3C validator