MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsdisj Structured version   Visualization version   GIF version

Theorem cshwsdisj 16420
Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwsdisj ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖,𝑛   𝑛,𝑊
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem cshwsdisj
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 orc 861 . . . . 5 (𝑛 = 𝑗 → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
21a1d 25 . . . 4 (𝑛 = 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
3 simprl 767 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)))
4 simprrl 777 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑛 ∈ (0..^(♯‘𝑊)))
5 simprrr 778 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ∈ (0..^(♯‘𝑊)))
6 necom 3066 . . . . . . . . . 10 (𝑛𝑗𝑗𝑛)
76biimpi 217 . . . . . . . . 9 (𝑛𝑗𝑗𝑛)
87adantr 481 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗𝑛)
9 cshwshash.0 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
109cshwshashlem3 16419 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)))
1110imp 407 . . . . . . . 8 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛)) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
123, 4, 5, 8, 11syl13anc 1364 . . . . . . 7 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
13 disjsn2 4640 . . . . . . 7 ((𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1412, 13syl 17 . . . . . 6 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1514olcd 870 . . . . 5 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1615ex 413 . . . 4 (𝑛𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
172, 16pm2.61ine 3097 . . 3 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1817ralrimivva 3188 . 2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
19 oveq2 7153 . . . 4 (𝑛 = 𝑗 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑗))
2019sneqd 4569 . . 3 (𝑛 = 𝑗 → {(𝑊 cyclShift 𝑛)} = {(𝑊 cyclShift 𝑗)})
2120disjor 5037 . 2 (Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} ↔ ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
2218, 21sylibr 235 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  cin 3932  c0 4288  {csn 4557  Disj wdisj 5022  cfv 6348  (class class class)co 7145  0cc0 10525  ..^cfzo 13021  chash 13678  Word cword 13849   cyclShift ccsh 14138  cprime 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-concat 13911  df-substr 13991  df-pfx 14021  df-reps 14119  df-csh 14139  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-phi 16091
This theorem is referenced by:  cshwshashnsame  16425
  Copyright terms: Public domain W3C validator