MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsdisj Structured version   Visualization version   GIF version

Theorem cshwsdisj 17007
Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwsdisj ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖,𝑛   𝑛,𝑊
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem cshwsdisj
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 orc 867 . . . . 5 (𝑛 = 𝑗 → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
21a1d 25 . . . 4 (𝑛 = 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
3 simprl 770 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)))
4 simprrl 780 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑛 ∈ (0..^(♯‘𝑊)))
5 simprrr 781 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ∈ (0..^(♯‘𝑊)))
6 necom 2981 . . . . . . . . . 10 (𝑛𝑗𝑗𝑛)
76biimpi 216 . . . . . . . . 9 (𝑛𝑗𝑗𝑛)
87adantr 480 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗𝑛)
9 cshwshash.0 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
109cshwshashlem3 17006 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)))
1110imp 406 . . . . . . . 8 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛)) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
123, 4, 5, 8, 11syl13anc 1374 . . . . . . 7 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
13 disjsn2 4665 . . . . . . 7 ((𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1412, 13syl 17 . . . . . 6 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1514olcd 874 . . . . 5 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1615ex 412 . . . 4 (𝑛𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
172, 16pm2.61ine 3011 . . 3 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1817ralrimivva 3175 . 2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
19 oveq2 7354 . . . 4 (𝑛 = 𝑗 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑗))
2019sneqd 4588 . . 3 (𝑛 = 𝑗 → {(𝑊 cyclShift 𝑛)} = {(𝑊 cyclShift 𝑗)})
2120disjor 5073 . 2 (Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} ↔ ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
2218, 21sylibr 234 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3901  c0 4283  {csn 4576  Disj wdisj 5058  cfv 6481  (class class class)co 7346  0cc0 11003  ..^cfzo 13551  chash 14234  Word cword 14417   cyclShift ccsh 14692  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-concat 14475  df-substr 14546  df-pfx 14576  df-reps 14673  df-csh 14693  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-prm 16580  df-phi 16674
This theorem is referenced by:  cshwshashnsame  17012
  Copyright terms: Public domain W3C validator