MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsdisj Structured version   Visualization version   GIF version

Theorem cshwsdisj 16291
Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwsdisj ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖,𝑛   𝑛,𝑊
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem cshwsdisj
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 orc 853 . . . . 5 (𝑛 = 𝑗 → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
21a1d 25 . . . 4 (𝑛 = 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
3 simprl 758 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)))
4 simprrl 768 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑛 ∈ (0..^(♯‘𝑊)))
5 simprrr 769 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ∈ (0..^(♯‘𝑊)))
6 necom 3020 . . . . . . . . . 10 (𝑛𝑗𝑗𝑛)
76biimpi 208 . . . . . . . . 9 (𝑛𝑗𝑗𝑛)
87adantr 473 . . . . . . . 8 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗𝑛)
9 cshwshash.0 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
109cshwshashlem3 16290 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)))
1110imp 398 . . . . . . . 8 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗𝑛)) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
123, 4, 5, 8, 11syl13anc 1352 . . . . . . 7 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))
13 disjsn2 4523 . . . . . . 7 ((𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1412, 13syl 17 . . . . . 6 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)
1514olcd 860 . . . . 5 ((𝑛𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1615ex 405 . . . 4 (𝑛𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)))
172, 16pm2.61ine 3051 . . 3 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
1817ralrimivva 3141 . 2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
19 oveq2 6986 . . . 4 (𝑛 = 𝑗 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑗))
2019sneqd 4454 . . 3 (𝑛 = 𝑗 → {(𝑊 cyclShift 𝑛)} = {(𝑊 cyclShift 𝑗)})
2120disjor 4912 . 2 (Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} ↔ ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))
2218, 21sylibr 226 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  cin 3830  c0 4180  {csn 4442  Disj wdisj 4898  cfv 6190  (class class class)co 6978  0cc0 10337  ..^cfzo 12852  chash 13508  Word cword 13675   cyclShift ccsh 14010  cprime 15874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-disj 4899  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-inf 8704  df-dju 9126  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-xnn0 11783  df-z 11797  df-uz 12062  df-rp 12208  df-fz 12712  df-fzo 12853  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-hash 13509  df-word 13676  df-concat 13737  df-substr 13807  df-pfx 13856  df-reps 13991  df-csh 14012  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-dvds 15471  df-gcd 15707  df-prm 15875  df-phi 15962
This theorem is referenced by:  cshwshashnsame  16296
  Copyright terms: Public domain W3C validator