![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwsdisj | Structured version Visualization version GIF version |
Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
Ref | Expression |
---|---|
cshwshash.0 | ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
Ref | Expression |
---|---|
cshwsdisj | ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 864 | . . . . 5 ⊢ (𝑛 = 𝑗 → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)) | |
2 | 1 | a1d 25 | . . . 4 ⊢ (𝑛 = 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))) |
3 | simprl 768 | . . . . . . . 8 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0))) | |
4 | simprrl 778 | . . . . . . . 8 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑛 ∈ (0..^(♯‘𝑊))) | |
5 | simprrr 779 | . . . . . . . 8 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ∈ (0..^(♯‘𝑊))) | |
6 | necom 2988 | . . . . . . . . . 10 ⊢ (𝑛 ≠ 𝑗 ↔ 𝑗 ≠ 𝑛) | |
7 | 6 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑛 ≠ 𝑗 → 𝑗 ≠ 𝑛) |
8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → 𝑗 ≠ 𝑛) |
9 | cshwshash.0 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
10 | 9 | cshwshashlem3 17040 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ≠ 𝑛) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗))) |
11 | 10 | imp 406 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ≠ 𝑛)) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)) |
12 | 3, 4, 5, 8, 11 | syl13anc 1369 | . . . . . . 7 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗)) |
13 | disjsn2 4711 | . . . . . . 7 ⊢ ((𝑊 cyclShift 𝑛) ≠ (𝑊 cyclShift 𝑗) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅) |
15 | 14 | olcd 871 | . . . . 5 ⊢ ((𝑛 ≠ 𝑗 ∧ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊))))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝑛 ≠ 𝑗 → (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅))) |
17 | 2, 16 | pm2.61ine 3019 | . . 3 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝑛 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 ∈ (0..^(♯‘𝑊)))) → (𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)) |
18 | 17 | ralrimivva 3194 | . 2 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)) |
19 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑗 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑗)) | |
20 | 19 | sneqd 4635 | . . 3 ⊢ (𝑛 = 𝑗 → {(𝑊 cyclShift 𝑛)} = {(𝑊 cyclShift 𝑗)}) |
21 | 20 | disjor 5121 | . 2 ⊢ (Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} ↔ ∀𝑛 ∈ (0..^(♯‘𝑊))∀𝑗 ∈ (0..^(♯‘𝑊))(𝑛 = 𝑗 ∨ ({(𝑊 cyclShift 𝑛)} ∩ {(𝑊 cyclShift 𝑗)}) = ∅)) |
22 | 18, 21 | sylibr 233 | 1 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 ∩ cin 3942 ∅c0 4317 {csn 4623 Disj wdisj 5106 ‘cfv 6537 (class class class)co 7405 0cc0 11112 ..^cfzo 13633 ♯chash 14295 Word cword 14470 cyclShift ccsh 14744 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-disj 5107 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-hash 14296 df-word 14471 df-concat 14527 df-substr 14597 df-pfx 14627 df-reps 14725 df-csh 14745 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 df-prm 16616 df-phi 16708 |
This theorem is referenced by: cshwshashnsame 17046 |
Copyright terms: Public domain | W3C validator |