MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq1 Structured version   Visualization version   GIF version

Theorem itgeq1 25674
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgeq1 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgeq1
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2817 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 631 . . . . . . . 8 (𝐴 = 𝐵 → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐵 ∧ 0 ≤ 𝑦)))
32ifbid 4512 . . . . . . 7 (𝐴 = 𝐵 → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
43csbeq2dv 3869 . . . . . 6 (𝐴 = 𝐵(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
54mpteq2dv 5201 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))
65fveq2d 6862 . . . 4 (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
76oveq2d 7403 . . 3 (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
87sumeq2sdv 15669 . 2 (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
9 df-itg 25524 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
10 df-itg 25524 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
118, 9, 103eqtr4g 2789 1 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3862  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  ici 11070   · cmul 11073  cle 11209   / cdiv 11835  3c3 12242  ...cfz 13468  cexp 14026  cre 15063  Σcsu 15652  2citg2 25517  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-sum 15653  df-itg 25524
This theorem is referenced by:  itgsplitioo  25739  ditgeq1  25749  ditgeq2  25750  ditg0  25754  ditgneg  25758  ftc1lem1  25942  ftc1a  25944  ftc2  25951  itgsubstlem  25955  ftc1anc  37695  ftc2nc  37696  areacirc  37707  itgeq1d  45955  fourierdlem103  46207  fourierdlem104  46208
  Copyright terms: Public domain W3C validator