| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itgeq1 | ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2822 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦))) |
| 3 | 2 | ifbid 4498 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 4 | 3 | csbeq2dv 3853 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 5 | 4 | mpteq2dv 5187 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
| 6 | 5 | fveq2d 6832 | . . . 4 ⊢ (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
| 7 | 6 | oveq2d 7368 | . . 3 ⊢ (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 8 | 7 | sumeq2sdv 15612 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 9 | df-itg 25552 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 10 | df-itg 25552 | . 2 ⊢ ∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 11 | 8, 9, 10 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⦋csb 3846 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 ici 11015 · cmul 11018 ≤ cle 11154 / cdiv 11781 3c3 12188 ...cfz 13409 ↑cexp 13970 ℜcre 15006 Σcsu 15595 ∫2citg2 25545 ∫citg 25547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seq 13911 df-sum 15596 df-itg 25552 |
| This theorem is referenced by: itgsplitioo 25767 ditgeq1 25777 ditgeq2 25778 ditg0 25782 ditgneg 25786 ftc1lem1 25970 ftc1a 25972 ftc2 25979 itgsubstlem 25983 ftc1anc 37761 ftc2nc 37762 areacirc 37773 itgeq1d 46079 fourierdlem103 46331 fourierdlem104 46332 |
| Copyright terms: Public domain | W3C validator |