| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > updjudhf | Structured version Visualization version GIF version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| updjud.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| updjudhf.h | ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
| Ref | Expression |
|---|---|
| updjudhf | ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 9884 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) = ∅) → (2nd ‘𝑥) ∈ 𝐴) | |
| 2 | 1 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ → (2nd ‘𝑥) ∈ 𝐴)) |
| 3 | updjud.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 4 | ffvelcdm 7056 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐴) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) | |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 7 | 2, 6 | sylan9r 508 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 8 | 7 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ (1st ‘𝑥) = ∅) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) |
| 9 | df-ne 2927 | . . . . 5 ⊢ ((1st ‘𝑥) ≠ ∅ ↔ ¬ (1st ‘𝑥) = ∅) | |
| 10 | eldju2ndr 9885 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) ≠ ∅) → (2nd ‘𝑥) ∈ 𝐵) | |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) ≠ ∅ → (2nd ‘𝑥) ∈ 𝐵)) |
| 12 | updjud.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
| 13 | ffvelcdm 7056 | . . . . . . . 8 ⊢ ((𝐺:𝐵⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐵) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) | |
| 14 | 13 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐵⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 15 | 12, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 16 | 11, 15 | sylan9r 508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) ≠ ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 17 | 9, 16 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → (¬ (1st ‘𝑥) = ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 18 | 17 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ ¬ (1st ‘𝑥) = ∅) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) |
| 19 | 8, 18 | ifclda 4527 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) ∈ 𝐶) |
| 20 | updjudhf.h | . 2 ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) | |
| 21 | 19, 20 | fmptd 7089 | 1 ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ifcif 4491 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 ⊔ cdju 9858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1st 7971 df-2nd 7972 df-1o 8437 df-dju 9861 |
| This theorem is referenced by: updjudhcoinlf 9892 updjudhcoinrg 9893 updjud 9894 |
| Copyright terms: Public domain | W3C validator |