| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > updjudhf | Structured version Visualization version GIF version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| updjud.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| updjudhf.h | ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
| Ref | Expression |
|---|---|
| updjudhf | ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 9877 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) = ∅) → (2nd ‘𝑥) ∈ 𝐴) | |
| 2 | 1 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ → (2nd ‘𝑥) ∈ 𝐴)) |
| 3 | updjud.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 4 | ffvelcdm 7053 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐴) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) | |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 7 | 2, 6 | sylan9r 508 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 8 | 7 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ (1st ‘𝑥) = ∅) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) |
| 9 | df-ne 2926 | . . . . 5 ⊢ ((1st ‘𝑥) ≠ ∅ ↔ ¬ (1st ‘𝑥) = ∅) | |
| 10 | eldju2ndr 9878 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) ≠ ∅) → (2nd ‘𝑥) ∈ 𝐵) | |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) ≠ ∅ → (2nd ‘𝑥) ∈ 𝐵)) |
| 12 | updjud.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
| 13 | ffvelcdm 7053 | . . . . . . . 8 ⊢ ((𝐺:𝐵⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐵) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) | |
| 14 | 13 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐵⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 15 | 12, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 16 | 11, 15 | sylan9r 508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) ≠ ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 17 | 9, 16 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → (¬ (1st ‘𝑥) = ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
| 18 | 17 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ ¬ (1st ‘𝑥) = ∅) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) |
| 19 | 8, 18 | ifclda 4524 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) ∈ 𝐶) |
| 20 | updjudhf.h | . 2 ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) | |
| 21 | 19, 20 | fmptd 7086 | 1 ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 ⊔ cdju 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1st 7968 df-2nd 7969 df-1o 8434 df-dju 9854 |
| This theorem is referenced by: updjudhcoinlf 9885 updjudhcoinrg 9886 updjud 9887 |
| Copyright terms: Public domain | W3C validator |