![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > updjudhf | Structured version Visualization version GIF version |
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
updjud.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
updjudhf.h | ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
Ref | Expression |
---|---|
updjudhf | ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju2ndl 9962 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) = ∅) → (2nd ‘𝑥) ∈ 𝐴) | |
2 | 1 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) = ∅ → (2nd ‘𝑥) ∈ 𝐴)) |
3 | updjud.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
4 | ffvelcdm 7101 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐴) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) | |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐴 → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
7 | 2, 6 | sylan9r 508 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) = ∅ → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶)) |
8 | 7 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ (1st ‘𝑥) = ∅) → (𝐹‘(2nd ‘𝑥)) ∈ 𝐶) |
9 | df-ne 2939 | . . . . 5 ⊢ ((1st ‘𝑥) ≠ ∅ ↔ ¬ (1st ‘𝑥) = ∅) | |
10 | eldju2ndr 9963 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑥) ≠ ∅) → (2nd ‘𝑥) ∈ 𝐵) | |
11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑥) ≠ ∅ → (2nd ‘𝑥) ∈ 𝐵)) |
12 | updjud.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
13 | ffvelcdm 7101 | . . . . . . . 8 ⊢ ((𝐺:𝐵⟶𝐶 ∧ (2nd ‘𝑥) ∈ 𝐵) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) | |
14 | 13 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐵⟶𝐶 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
15 | 12, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((2nd ‘𝑥) ∈ 𝐵 → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
16 | 11, 15 | sylan9r 508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑥) ≠ ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
17 | 9, 16 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → (¬ (1st ‘𝑥) = ∅ → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶)) |
18 | 17 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) ∧ ¬ (1st ‘𝑥) = ∅) → (𝐺‘(2nd ‘𝑥)) ∈ 𝐶) |
19 | 8, 18 | ifclda 4566 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 𝐵)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) ∈ 𝐶) |
20 | updjudhf.h | . 2 ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) | |
21 | 19, 20 | fmptd 7134 | 1 ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 ifcif 4531 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 ⊔ cdju 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-1st 8013 df-2nd 8014 df-1o 8505 df-dju 9939 |
This theorem is referenced by: updjudhcoinlf 9970 updjudhcoinrg 9971 updjud 9972 |
Copyright terms: Public domain | W3C validator |