Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunov2uz Structured version   Visualization version   GIF version

Theorem eliunov2uz 43712
Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.)
Hypothesis
Ref Expression
eliunov2uz.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
eliunov2uz ((𝑅𝑈𝑁 = (ℤ𝑀)) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑀(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eliunov2uz
StepHypRef Expression
1 simpr 484 . . 3 ((𝑅𝑈𝑁 = (ℤ𝑀)) → 𝑁 = (ℤ𝑀))
2 fvex 6919 . . 3 (ℤ𝑀) ∈ V
31, 2eqeltrdi 2849 . 2 ((𝑅𝑈𝑁 = (ℤ𝑀)) → 𝑁 ∈ V)
4 eliunov2uz.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
54eliunov2 43692 . 2 ((𝑅𝑈𝑁 ∈ V) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
63, 5syldan 591 1 ((𝑅𝑈𝑁 = (ℤ𝑀)) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480   ciun 4991  cmpt 5225  cfv 6561  (class class class)co 7431  cuz 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator