MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixpconst Structured version   Visualization version   GIF version

Theorem elixpconst 8829
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.)
Hypothesis
Ref Expression
elixp.1 𝐹 ∈ V
Assertion
Ref Expression
elixpconst (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elixpconst
StepHypRef Expression
1 elixp.1 . . 3 𝐹 ∈ V
21elixp 8828 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
3 ffnfv 7052 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
42, 3bitr4i 278 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wral 3047  Vcvv 3436   Fn wfn 6476  wf 6477  cfv 6481  Xcixp 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ixp 8822
This theorem is referenced by:  ixpconstg  8830  sscpwex  17719  psrbaglefi  21861  ixpv  48920
  Copyright terms: Public domain W3C validator