MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixpconst Structured version   Visualization version   GIF version

Theorem elixpconst 8963
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.)
Hypothesis
Ref Expression
elixp.1 𝐹 ∈ V
Assertion
Ref Expression
elixpconst (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elixpconst
StepHypRef Expression
1 elixp.1 . . 3 𝐹 ∈ V
21elixp 8962 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
3 ffnfv 7153 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
42, 3bitr4i 278 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067  Vcvv 3488   Fn wfn 6568  wf 6569  cfv 6573  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ixp 8956
This theorem is referenced by:  ixpconstg  8964  sscpwex  17876  psrbaglefi  21969
  Copyright terms: Public domain W3C validator